

SHAPING A WORLD OF TRUST

Bureau Veritas Minerals (BVM) is the leading global provider of geochemistry, geoanalytical, mineral processing and environmental services to the exploration and mining community. We are by your side throughout the mining value chain: exploration, extraction, processing and transportation. Our services are structured to support the life cycle of your assets, from planning and design through procurement of components and equipment to construction, operation and closure.

UNDERSTANDING YOUR CHALLENGES

IN EXLORATION

Mining is among the world's highest-risk businesses: projects are often operated in remote, and sometimes, conflict-afflicted areas. The supply chain—which is both global and highly local—is complex. Environmental regulations are becoming more stringent. And works are often carried out under risky conditions in which safety can be compromised. As a mine operator, you need to ensure the quality, safety, and cost-effectiveness of your mining project. At the same time, you want to ensure your assets' future reliability and comply with regulations.

IN OPERATIONS

Mining and exploration companies face one priority above all: to ensure their projects' commercial, technical and operational viability. They must also ensure shipment quality. For traders, certainty in the value of commercial settlements is a key concern. Across the entire life cycle, from early stage exploration through trading to smelting and recycling, companies seek to minimize risk while attaining high industry standards.

PROVIDING YOU SUPPORT

"Bureau Veritas is a Business to Business to Society service company that contributes to positively transforming the world we live in. We work closely with our clients to address the critical challenges they face and to link these to the emerging aspirations of society. We play a pivotal role in building and protecting companies' reputations, supporting them as they forge the foundations of trust that is built to last."

Hinda Gharbi CEO Bureau Veritas

Since 1828, we have acted as trust-makers between companies, governments and society, independent, impartial guarantors of our client's word. We provide support throughout your mining project's lifecycle—from exploration and procurement, to construction and operation—with services that cover products, assets, facilities, and processes. Working in major world ports and global mining and refining locations, Bureau Veritas has the infrastructure and expertise to minimize your commercial risk through upstream and trade services.

FULL MINING LIFE CYCLE

EXPLORATION

- + Ultra-Trace Geochemistry
- + Trace and Ore Grade + Mineralogy & Assays
- + Lithogeochemistry
- + Environmental Chemistry

DEVELOPMENT

- + Ore Characterization
- Petrography
- + Pilot Plant Assessment

FEASIBILITY

- + Environmental Chemistry
- + Industrial Hygiene
- + Metallurgy & Mineralogy Testing

OPERATION

- + Environmental Chemistry
- + On-Site Lab Services
- + Trade and Settlement Testing
- + Used Oil Analysis

REMEDIATION

- + Static and Kinetic **ARD Testing**
- + Environmental Chemistry
- + Geochemistry

RAPID GOLD BY PXRF


We now offer the opportunity to obtain Rapid low level gold results throughout our lab network using pXRF. BV has partnered with the Portable PPB group to offer the detectORE™ technology, a greener, cleaner assay solution to measure very low concentrations of gold in samples with pXRF. This can be made available throughout our network without a large upfront capital commitment for customers looking for rapid results.

CRITICAL MINERALS / METALS

Bureau Veritas is recognized as a global leader in innovative laboratory testing, inspection, and certification solutions, which serve the businesses that are shaping our changing world.

ONSITE LABORATORY SERVICES

BVM Mine Site Laboratory Services provides high quality customized laboratories supported by our global network of professionals. Our goal is to provide you with a solution that meets your project needs, ranging from a remote mobile prep lab to a full service analytical laboratory at the mine. All labs meet the requirements of ISO 9001 Quality Management Systems and use validated methods and processes which comply with global OH&S standards. As we are the global leader in analytical geochemistry, we will provide you with a customized lab that will minimize costs and liability so your focus can be on mining and exploration.

ONSITE LABORATORY SERVICES

- + Sample Prep Lab
- + Containerized Lab
- + Full Service Lab

MINERAL TESTING SERVICES

- + Assaying and geochemical analysis
- + Metallurgical testing services
- + Mineralogical analysis
- + Environmental requirements

QUALITY & INTEGRITY

- + ISO accredited laboratories
- Training and onsite laboratory support by qualified BVM Staff
- + Latest production scheduling
- Auditing of laboratory procedures and management systems

OUTSOURCING

- + Custom designed facilities to improve sample processing efficiency
- + Technical diagnosis and service repair of existing equipment to reduce costs

TABLE OF CONTENTS

SAMPLE PREPARATION, STORAGE & DISPOSAL	CODE	10
Crush 70% 10 mesh and pulverize 250 g	PRP70-250	11
Pulverize to 85% passing 200 mesh	PUL85	11
Standard soil sieve 80 mesh	SS80	12

PRECIOUS METALS & LEACHES	CODE	16
Fire Assay Au, Pt, Pd – ICP-ES	FA330	17
Fire Assay Au 30 g – AAS finish	FA430	17
Fire Assay Ag 30 g – Gravimetric	FA530-Ag	17
Fire Assay Au 30 g – Gravimetric	FA530-Au	17
Fire Assay Au and Ag 30 g – Gravimetric	FA530	17
Metallic Screen Fire Assay 50 g duplicate minus fraction	FS652	18

ORE & HIGH GRADE ANALYSIS	CODE	21
Aqua regia Ore Grade AAS	AR402	22
Multi-acid Ore Grade AAS	MA404	22
Aqua regia Ore Grade ICP-ES	AQ370	23
Multi-acid Ore Grade ICP-ES	MA370	23
Zn Titration	GC816	26
Pb Titration	GC817	26
Fe Titration	GC818	26
Cu Titration	GC820	26

EXPLORATION GEOCHEMISTRY	CODE	27
Aqua regia – ICP-ES	AQ300	28
Aqua regia – ICP-ES/MS	AQ200	28
Aqua regia – Ultra-trace	AQ250	29
Multi-acid – ICP-ES	MA300	30
Multi-acid – ICP-ES/MS	MA200	30
Aqua regia – ICP-ES/MS Hg	AQ200-Hg	30
Multi-acid – Ultra-trace	MA250	31
Plant Material Analysis	VG101	34
Generative Exploration Package	GENX10	36

LITHOGEOCHEMISTRY	CODE	37
Lithium Borate Fusion – Refractory and REEs	LF100	38
Total Whole Rock Characterization	LF202	38
Whole Rock Lithium Fusion ICP Finish	LF300	38
Leco – Total C and S	TC000	39
XRF – Fusion – Major Oxides	XF700	40
XRF – Fusion – Iron Ore	XF732	41
XRF – Fusion – Laterites	XF720	42
Laser Ablation Package	LA001-EXT + XRF	43
METAL & MINERAL TRADE		44
ACID ROCK DRAINAGE		46
Geochemical & Mineralogical Testing		47
Static & Sequential Water Extractions		47
Kinetic Testing		47
OIL CONDITION MONITORING		48
Equipment Application Testing		49

- VERIFY CONFORMITY
 TESTING & ANALYSIS
 - + Construction material testing
 - + Geotechnical services
- IDENTIFY ISSUES IN ADVANCE
 DESIGN & TECHNICAL
 SERVICES
 - + Design review
 - + Technical diagnosis

- CONFIRM THE QUALITY OF COMMODITIES
- LABORATORY TESTING SERVICES
 - + Testing of exploration samples
 - + Grade control
 - + Mineral processing testing
 - + Outsourcing of laboratories at mining sites
- ACCESS EXPERTISE
 COMMISSIONING SERVICES
 - + Technical assistance to precommissioning and commissioning

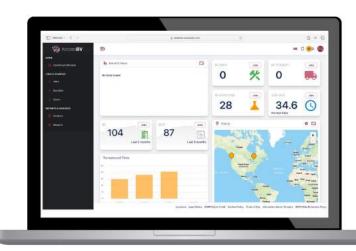
- GAIN REASSURANCE
 CONSTRUCTION SERVICES
 - + QA/QC
 - + Project management supervisory services
 - + Site safety management
- CONTROL QUALITY
 PROCUREMENT SERVICES
 - + Vendor assessment
 - + Expediting
 - + Shop inspection
 - + Pre-shipment inspection

- AVOID UNPLANNED SHUTDOWNS SERVICES FOR OPERATIONS
 - + Operational reliability
 - + Shutdown inspection services
 - + Noise & vibration

- PRESERVE ASSET LIFE
 INTEGRITY & RELIABILITY
 INSPECTION SERVICES
 - + Non-destructive testing
 - + Condition monitoring
 - + Structural integrity inspection
 - + Non-intrusive & risk-based inspection
 - + Mechanical testing

- VERIFY SHIPPED COMMODITIES
 TESTING AND
 INSPECTION SERVICES
 - + Sample testing
 - + Quantity and quality inspections
- DEMONSTRATE BEST PRACTICE
 CERTIFICATION SERVICES
- + Quality
- + Health & Safety
- + Health
 + Enviro
 - + Environmental management

Bureau Veritas | Schedule of Services & Fees 2024


ACCESS BV

MANAGING YOUR EXPLORATION PROGRAM RESULTS HAS NEVER BEEN EASIER.

The Access BV Portal provides access to real-time information from the convenience of your laptop, tablet or smartphone. With the portal in your pocket, you can stay up to speed, order, submit and review while on the move.

ACCESS BV PORTAL PROVIDES UNLIMITED GLOBAL ONLINE ACCESS, ENABLING YOU TO:

- See all your data in one place
- · Create re-usable submission templates
- Work offline and upload later
- Collaborate with your team
- Integrate with your system via APIs
- Provide feedback and notify the laboratory

To find out more about how Access BV can help, please contact your client services account manager.

THE BUREAU VERITAS MINERALS SAMPLE PREPARATION PROCESS INCORPORATES SEVERAL IMPORTANT STEPS. THESE STEPS LAY THE GROUNDWORK FOR ALL ANALYSES

- Sample log-in and reconciliation against the client-supplied list. An electronic reconciliation is sent out for each job, which indicates methods, any potential missing samples, TAT, etc.
- Sample drying.
- Crushing and pulverizing rock, core or other solid media, or sieving soils and sediments. The lab typically crushes the entire sample and the sample mass to be pulverized can be varied based on client preference.
- Most importantly, our labs undertake a rigorous QAQC program to ensure consistent results. A sieve test is used to monitor the process on select and random samples at the primary crushing and pulverizing stage, as well as monitor the wear surfaces of plates, bowls and other equipment problems.

These tests are recorded and produced for your review. If there is a non-conformance in the quality standard, the process is reviewed and corrected. This rigorous policy applies to any material that is reported or used in the analytical process.

The packages listed here are the most common methods applied in our industry. If you require custom sample preparation techniques please contact your local account manager or lab nearest to your project to discuss in more detail. You will find our team of professionals and technical group second to none in our ability to provide support.

ROCK AND CORE PREPARATION

CODE	DESCRIPTION	USD
PRP70-250	Crush to ≥70% passing 2mm - Pulverize 250 g ≥85% 75μm per kg*	\$10.75 + \$1.10
PRP70-500	Crush to ≥70% passing 2mm - Pulverize 500 g ≥85% 75μm per kg*	\$11.80 + \$1.10
PRP70-1Kg	Crush to ≥70% passing 2mm - Pulverize 1 kg ≥85% 75µm per kg*	\$13.35 + \$1.10
PRP80-250	Crush to ≥80% passing 2mm - Pulverize 250 g ≥85% 75µm per kg*	\$11.65 + \$1.80
PRP90-250	Crush to ≥90% passing 2mm - Pulverize 250 g ≥85% 75µm per kg*	\$12.10 \$2.30
CRU70	Crush to ≥70% passing 2mm per kg*	\$5.05 + \$1.10
CRUPR	Primary Crushing for large samples, (eg. whole core), per kg	\$1.50
PUL85	Dry and pulverize to ≥85% passing 75 μm Extra pulverizing over 250 g, per 250 g	\$5.20 + \$1.30
DY105	Dry pulp at 105°C, per sample	\$0.90
HOMG	Homogenizing of pulps by light pulverizing	\$4.80
SPTRF	Split by riffle splitter up to 5 kg of –2 mm sample, per sample	\$3.10
WGHT	Weigh sample	\$0.95
CRUBW	Extra wash with barren material – crushing	\$3.60
PULSW	Extra wash – silica – pulverizing	\$4.80
SPTRS	Rotary split up to 5 kg	\$6.30

^{*}Charged in units of 100g unless otherwise quoted

Other size fractions / preparation requirements available upon request. For example ceramic bowl pulverizing, different size crushing and bowl sizes, etc.

SOILS

CODE	DESCRIPTION	USD
SS80	Dry at 60°C, sieve to depletion to -180 µm (80 mesh) up to 1 kg sample (discard plus fraction)	\$3.70
	Overweight sieving per 500 g - extra sieving over 1 kg	\$1.85
	Dry at 60°C, sieve 100 g to -63 µm (230 mesh), up to 1 kg sample	\$5.90
SS230	Overweight sieving per 500 g	\$2.95
	Other sieve sizes available upon request	By quote
PULSL	Pulverize soils in mild steel pulverizer, per 100 g	\$4.55
SVRJT	Saving all or part of soil reject	\$1.40
CLYSP	Clay separation up to 500 g (for other weight requirements please contact us)	\$34.65
DISP2	Heat treatment of soils and sediments prior to disposal, per sample (All international soil shipments to Canada)	\$0.75

Important note regarding soils: Importation regulations may apply; contact lab prior to shipment for details and shipment requirements. For soil shipments to Canada: No soil, till, sediment pulps or rejects can be returned and must be incinerated prior to disposal. A disposal fee (DISP2) is charged for these samples. Soil rejects are discarded immediately after preparation unless SVRJT is requested.

SUBMITTING SAMPLES FOR ANALYSIS

SHIPPING INSTRUCTIONS

Go to our website and download our Analysis Request Form (english or spanish available)

- Fill in the form clearly by following step by step instructions (do not alter form format)
- Company information, quote number, project, Shipment ID, name, email and phone number
- Client details, invoice & report
- Mode of data transmittal (CSV, PDF, email)
- Method of analysis desired or package requested
- Special instructions
- Rush service needed
- Storage and disposal (reject or pulps) after analysis
- Don't forget to sign

PACKAGING INSTRUCTIONS

- Pack the samples securely, ensuring that each sample is clearly labeled with a sample number.
- Please identify any high grade samples this helps us to reduce the risk of cross contamination.

SOILS INSTRUCTIONS (TO AND WITHIN) CANADA

Bureau Veritas will provide a CFIA Permit needed to clear soil samples expeditiously through Canada Customs. Permits are specific for the country of sample shipment origin and valid for one year. A copy of the permit must accompany each shipment and must be packaged in sturdy, leak-proof containers. Please contact laboratory prior to shipment for details and documentation requirements. Shipments cleared through Canada Customs for no charge.

ENVIRONMENTAL FEE

As part of our commitment to minimizing the environmental impact of our business activities, Bureau Veritas Minerals has migrated to a single green fee charge to cover all waste charges incurred by the laboratories. This fee, EN004, covers charges for cardboard and plastic recycling, hazardous waste disposal, emissions testing and monitoring, permitting fees and ongoing sustainability initiatives.

CODE	DESCRIPTION	USD
EN004	Environmental fee charge	\$1.20

SAMPLE SUBMISSION ANALYSIS

SPECIFIC GRAVITY

CODE	DESCRIPTION	USD
SPG02	Specific Gravity on core by water displacement Surcharge over 2 kg	\$18.85 \$6.80
SPG03	Specific Gravity on waxed core (wax removal not included)	\$28.70
SPG04	Density on pulps or rock chips by gas pycnometer	\$20.15

MISCELLANEOUS CHARGES

CODE	DESCRIPTION	USD
BAT01	Administrative fee per batch	\$52.25
PULHP	Hand pulverize by mortar and pestle	\$11.90
QССНК	Additional QC checks	\$4.55
HAND	Handling of special projects, per hour	\$84.55
SHP-01	Shipping charge (pulps), per sample — from branch (varies by country)	From \$2.85
SPTPL	Extra splitting of pulp	\$1.40
PULSW	Extra wash with silica-pulverizing	\$4.80
DYAIR	Air Dry samples, (<40°C), per 2 kg	\$3.45
DYXS	Drying surcharge for excessively wet samples Surcharge over 1 kg, per kg	\$3.35 + \$1.35
SLBHP	Sorting, Labeling, Boxing and Handling samples received as Pulps	\$1.40
VAC01	Vacuum seal samples, nitrogen purge	\$14.25
CRCUT	Core Cutting	By quote
PICKUP	Shipping charges for samples pick up	By quote

SAMPLE SUBMISSION ANALYSIS (continued)

WAREHOUSE CHARGES

CODE	DESCRIPTION	USD
SPRTRN	Cost of shipping returns	At cost
DISRJ	Dispose of reject	\$1.00
DISPL	Dispose of pulps	\$0.25
WHRJT	Monthly storage of reject after 60 days	\$0.95
WHPLP	Monthly storage of pulps after 90 days (up to 250 g sample)	\$0.50
WHS01	Warehouse handling	By quote
WHSRT	Monthly storage of soil rejects after 60 days	\$0.50

Storage information: All samples rejects are stored for 2 months and pulps for 3 months at no charge and will be disposed of without notification unless storage is requested at the time of submission. A minimum charge of \$45/quarter will apply to all clients with samples in storage. When storage is requested on receipt, storage will be charged up front to cover the first 6 months. All disposal, handling or shipping charges for concentrates, high norm samples and samples containing hazardous materials will be borne by the client.

METHODS IN THIS SECTION INCLUDE INDUSTRY
STANDARD FIRE ASSAY OPTIONS FOR GOLD, SILVER,
PLATINUM AND PALLADIUM. FROM A BASIC 30 GRAM
CHARGE TO FULL METALLIC SCREEN FIRE ASSAY,
RELIABLE DATA IS ACHIEVED FOR ALL SAMPLE TYPES
INCLUDING THOSE WITH COARSE GOLD.

Bulk leaching of gold bearing materials using cyanide is also available and provides an additional tool to evaluate systems with unevenly distributed gold and to test for extractability. Selective and sequential leaches are also included in this section to provide information on the distribution of copper within various phases in the sample.

PRECIOUS METALS & LEACHES

AQUA REGIA GOLD

Recommended for soils, sediments, vegetation or reconnaissance rock samples. Samples are digested in 1:1:1 aqua regia then analyzed by ICP-MS. Refractory, massive sulphide and graphitic samples can limit Au solubility.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
AQ115	Au	0.5 ppb	10 ppm	15 g Aqua regia ICP-MS	\$18.10
AQ130	Au	0.5 ppb	10 ppm	30 g Aqua regia ICP-MS	\$21.40
AQ115-IGN	Au	0.5 ppb	10 ppm	Ignited 15 g Aqua regia ICP-MS Rock samples are ignited at 550°C before aqua regia digestion	\$20.30
AQ130-IGN	Au	0.5 ppb	10 ppm	Ignited 30 g Aqua regia ICP-MS Rock samples are ignited at 550°C before aqua regia digestion	\$23.95

FIRE ASSAY

Lead collection fire assay fusion is a classic method for total sample decomposition. Total Au content is determined by digesting an Ag dore bead and then analysing by AAS, ICP-ES, or ICP-MS. The Lab reserves the right to reduce sample weight to 15 g or less for proper fusion.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
ICP-MS					
FA130 FA150	Au Pt Pd	1 ppb 0.1 ppb 0.5 ppb	1 ppm 1 ppm 1 ppm	30 g / Fire Assay / ICP-MS 50 g / Fire Assay / ICP-MS	\$29.65 \$33.65
ICP-ES					
FA330-Au* FA350-Au*	Au Au	2 ppb 2 ppb	10 ppm 10 ppm	30 g / Fire Assay / ICP-ES 50 g / Fire Assay / ICP-ES	\$23.25 \$27.60
FA330* FA350*	Au Pt Pd	2 ppb 3 ppb 2 ppb	10 ppm 10 ppm 10 ppm	30 g / Fire Assay / ICP-ES 50 g / Fire Assay / ICP-ES	\$27.80 \$29.70
AAS					
FA430* FA450*	Au Au	0.005 ppm 0.005 ppm	10 ppm 10 ppm	30 g / Fire Assay / AAS 50 g / Fire Assay / AAS	\$22.65 \$26.15
GRAVIMETRIC					
FA530-Ag FA550-Ag	Ag Ag	20 ppm 20 ppm	10,000 ppm 10,000 ppm	30 g / Fire Assay / Gravimetric 50 g / Fire Assay / Gravimetric	\$31.65 \$36.20
FA530-Au FA550-Au	Au Au	0.9 ppm 0.9 ppm	1,000 ppm 1,000 ppm	30 g / Fire Assay / Gravimetric 50 g / Fire Assay / Gravimetric	\$31.65 \$36.20
FA530 FA550	Au, Ag Au, Ag	as above as above	as above as above	30 g / Fire Assay / Gravimetric 50 g / Fire Assay / Gravimetric	\$31.65 \$36.20

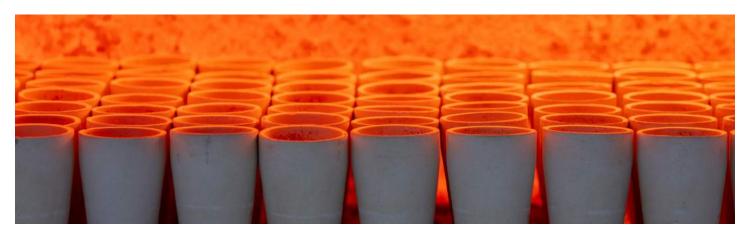
Require at least 15 g sample weight.

^{*}Au>10 ppm are automatically analyzed by gravimetric method.

PRECIOUS METALS & LEACHES

METALLIC SCREEN FIRE ASSAY

Metallic screen fire assay prices include screening of sample to 106 µm. Additional preparation charges for crushing and pulverizing may apply. Alternative screen sizes/weights available upon request. Pricing is based on gravimetric analysis of the plus fraction and instrumentation on the minus fraction. Additional charges for gravimetric analysis on the minus fraction may apply. Please contact your local office to develop the right package for your project.


CODE	ELEMENT	DETECTION LIMIT	DESCRIPTION	USD
FS632	Au	0.05 ppm	Metallic Fire Assay duplicate minus fraction analyzed, 30 g - 500 g screen	\$73.40
FS632-1Kg	Au	0.05 ppm	Metallic Fire Assay duplicate minus fraction analyzed, 30 g - 1 kg screen	\$88.85
FS652	Au	0.05 ppm	Metallic Fire Assay duplicate minus fraction analyzed, 50 g – 500 g screen	\$83.30
FS652-1Kg	Au	0.05 ppm	Metallic Fire Assay duplicate minus fraction analyzed, 50 g – 1 kg screen	\$94.45

OTHER CHARGES

CODE	DESCRIPTION	USD
EN004	Environmental fee charge	\$1.20
СНРОТ	Stipulate new crucible for fire assay fusion	\$2.15

WET ASSAY SILVER - ORE GRADE

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
AR401-Ag	Ag	1 ppm	800 ppm	Aqua Regia Digestion AAS Finish	\$16.60
MA401-Ag	Ag	1 ppm	800 ppm	Multi-acid Digestion AAS Finish	\$20.10

PRECIOUS METALS & LEACHES

PACKAGES FOR REGIONAL NEEDS — CONTACT BEFORE SHIPMENT

CARBONS, CONCENTRATES & HIGH GRADE

This method is ideal for the determination of Au and Ag when higher levels of precision are required. Our stringent quality control protocols involve the use of replicate assays and reference materials suited to the analysis to confirm accuracy. Results are not for commercial settlement purposes. Contact Bureau Veritas Commodities – Metals & Minerals Trade for commercial sampling and testing services where results are to be used for commercial settlement and/or financial transactions.

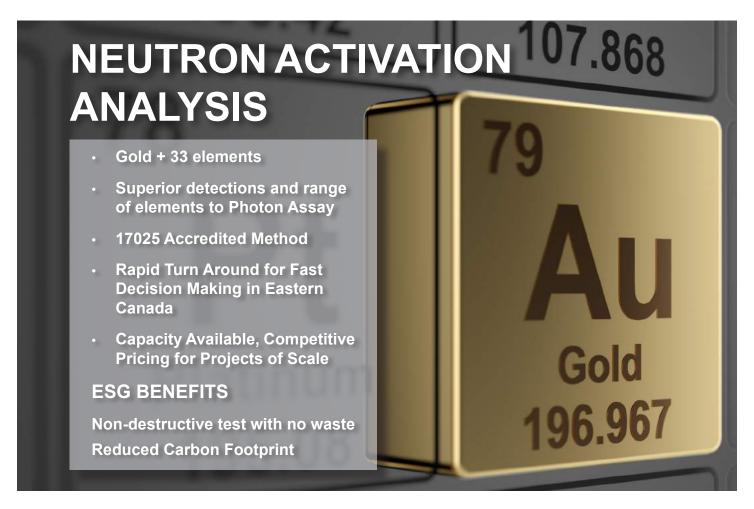
CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
FA501-Au	Au	10 ppm	100000 ppm	2 g sample Fire Assay for concentrates, duplicate analyses	\$118.25
FA501-Ag	Ag	100 ppm	100000 ppm	2 g sample Fire Assay for concentrates, duplicate analyses	\$118.25
FA501	Au, Ag	as above	as above	2 g sample Fire Assay for concentrates, duplicate analyses	\$139.75

Note: Additional base metal elements may be added for an additional analytical charge

GOLD BASE METAL LEACHES

Cyanide leaching can offer an alternative to classic fire assay methods with a comparible low detection limit. However, cyanidation analytical tests provide a more realistic estimation of gold and silver recovery from a rock pulp. Gold recovery can be impacted by organic carbon, graphite, and some sulphide minerals.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
BL001	Au			Please call to discuss	By quote
CN400	Au, Ag, Cι	0.03 ppm	50 ppm	Cyanide leach (various options)	By quote
CN401	Au	0.03 ppm	50 ppm	15 g, 1 hour room temperature cyanide shake, AAS finish	\$20.05
CN403	Au	0.03 ppm	50 ppm	30 g, 1 hour room temperature cyanide shake, AAS finish	\$21.90
CN401H	Au	0.03 ppm	50 ppm	15 g, 1 hour hot cyanide shake, AAS finish	\$23.30
CN403H	Au	0.03 ppm	50 ppm	30 g, 1 hour hot cyanide shake, AAS finish	\$24.95
PL415	Au	0.03 ppm	50 ppm	Preg rob leach-2 cyanide leaches with and without Au spiked solution < 15 g sample	Each leach \$16.05


Note: Additional base metal elements (Fe, Zn, Pb) may be added to some leaches for an additional analytical charge. Please contact the laboratory regarding your specific analytical requirements.

PACKAGES FOR REGIONAL NEEDS — CONTACT BEFORE SHIPMENT (continued)

COPPER LEACHES

The following methods are used for the determination of Cu leachability, mineralogy and mineral solubility. These methods utilize laboratory standard leach conditions; however client specific conditions can be negotiated upon request.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	DESCRIPTION	USD
LH401	CuS	0.001 %	10 %	1M Citric acid leach with AAS finish - Cu oxides	\$18.00
LH402	CuSH	0.001 %	10 %	Sulphuric acid leach with AAS finish - nonsulphide Cu	\$18.00
LH403	CuCN	0.01 %	10 %	Cyanide leach with AAS finish (30g)	\$19.30
LH425	CuSAP	0.01 %	100 %	Quick ferric sulphate leach for 1hr Cu by AAS	\$21.30
LHSQ2	CuSH CuCN CuRes*			Sample is sequentially leached in H ₂ SO ₄ (LH402), CN (LH403) with Cu from each leach reported. *Add Total Cu analysis by MA404 to calculate residue Cu	\$43.50

BUREAU VERITAS' METHODS ARE DESIGNED TO PROVIDE THE EXTREMELY HIGH PRECISION AND ACCURACY REQUIRED TO QUANTIFY COMMODITY ELEMENTS FOR RESOURCE EVALUATION.

Methods in this section are designed to provide the high precision and accuracy required to quantify commodity elements for resource evaluation. Digestion methods and reagents are chosen to effectively deal with high analyte concentrations. They are coupled with the most stable and matrix tolerant analytical platforms available to produce data of the highest quality. A variety of classical wet assay methods are also available for samples that exceed the maximum concentrations that can be determined instrumentally.

AAS ANALYSIS

Aqua regia and multi-acid digestions with AAS analysis are optimized for moderate to high grade ore samples and select target elements. These methods can be set up to be triggered automatically or selected as standalone packages.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
MA401	Ag	1 ppm	800 ppm	
	Cu	0.001 %	10 %	
	Fe	0.01 %	10 %	
	Pb	0.01 %	10 %	
	Zn	0.01 %	10 %	
MA401-Mo	A401-Mo Mo 0.001 %	0.001 %	10 %	\$16.35
	Cu	0.001 %	10 %	+\$3.75 per
MA404	Ag	2 ppm	1500 ppm	element
	Cu	0.01 %	30 %	
	Fe	0.01 %	30 %	
	Ni	0.01 %	30 %	
	Pb	0.01 %	20 %	
	Zn	0.01 %	30 %	

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AR401	Ag Cu	1 ppm 0.001 %	800 ppm 10 %	
AR402	Ag Cu Pb Zn	2 ppm 0.001 % 0.01 % 0.01 %	1000 ppm 10 % 10 % 10 %	\$12.85 +\$3.75 per
AR404	Ag Cu Pb Zn	2 ppm 0.001 % 0.01 % 0.01 %	1500 ppm 20 % 20 % 20 %	element

ICP ANALYSIS

The following multi-element assays provide optimum precision and accuracy for high grade rock and drill core samples with a selection of digestion methods to best suit the ore type. AQ370, MA370 and PF370 report percent level concentrations as determined by ICP-ES.

AQUA REGIA ICP-ES

Modified aqua regia digestion for base-metal sulphide and precious metal ores. Aqua regia digestion is considered a partial digestion. Solubility of some elements will be limited by the mineral species present.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AQ370	Aqua Regi	a ICP-ES, 24 e	elements	\$24.95
	Ag	2 ppm	1000 ppm	
	Al	0.01 %	40 %	
	As	0.01 %	10 %	
	Bi	0.01 %	1 %	
	Ca	0.01 %	40 %	
	Cd	0.001 %	1 %	
	Со	0.001 %	1 %	
	Cr	0.001 %	5 %	
	Cu	0.001 %	10 %	
	Fe	0.01 %	40 %	
	Hg	0.001 %	1 %	
	K	0.01 %	40 %	
	Mg	0.01 %	40 %	
	Mn	0.01 %	20 %	
	Мо	0.001 %	5 %	
	Na	0.01 %	25 %	
	Ni	0.001 %	10 %	
	Р	0.001 %	25 %	
	Pb	0.01 %	4 %	
	S	0.05 %	30 %	
	Sb	0.001 %	5 %	
	Sr	0.001 %	1 %	
	W	0.001 %	1 %	
	Zn	0.01 %	20 %	

AQ370-X Aqua Regia ICP-ES, any 1 element \$18.05

MULTI-ACID ICP-ES

Multi-acid digestion for sulphide and silicate ores. This digest approximates a 'total' digest in most samples. Some refractory minerals may not be fully attacked.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
MA370	Multi-acid l	CP-ES, 23 ele	ements	\$28.55
	Ag	2 ppm	1500 ppm	
	Al	0.01 %	40 %	
	As	0.02 %	10 %	
	Bi	0.01 %	2 %	
	Ca	0.01 %	50 %	
	Cd	0.001 %	2 %	
	Со	0.001 %	2 %	
	Cr	0.001 %	5 %	
	Cu	0.001 %	10 %	
	Fe	0.01 %	60 %	
	K	0.01 %	40 %	
	Mg	0.01 %	40 %	
	Mn	0.01 %	20 %	
	Мо	0.001 %	5 %	
	Na	0.01 %	25 %	
	Ni	0.001 %	10 %	
	P	0.01 %	25 %	
	Pb	0.02 %	10 %	
	S	0.05 %	30 %	
	Sb	0.01 %	1 %	
	Sr	0.01 %	1 %	
	W	0.01 %	1 %	
	Zn	0.01 %	40 %	

MA370-X Multi-acid ICP-ES, any 1 element \$21.40

Requires at least 1 g per sample.

Digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta, Zr and REEs. Volatilization during fuming may result in loss of As, S, Se and Sb.

PHOSPHORIC ACID ICP-ES

Phosphoric acid digestion for select elements.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
KP300	Phosphoric	Acid, ICP-ES,	5 elements	\$25.00
	Мо	0.001 %	40 %	
	Nb	0.001 %	40 %	
	Та	0.001 %	60 %	
	U	0.001 %	60 %	
	W	0.005 %	40 %	

KP300-X Phosphoric Acid, ICP-ES, any 1 element \$19.65

Requires at least 2 g per sample.

PEROXIDE FUSION ICP-ES

Sodium peroxide fusion for refractory mineral ores. This process provides complete dissolution of most minerals including silicates. Volatile elements are lost at the high fusion temperatures.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
PF370	Peroxide Fu	usion ICP-ES,	17 elements	\$55.05
	Al	0.01 %	50 %	
	As	0.01 %	10 %	
	Ca	0.05 %	50 %	
	Co	0.002 %	30 %	
	Cr	0.01 %	30 %	
	Cu	0.005 %	30 %	
	Fe	0.05 %	70 %	
	K	0.01 %	30 %	
	Li	0.001 %	50 %	
	Mg	0.01 %	30 %	
	Mn	0.01 %	70 %	
	Ni	0.005 %	30 %	
	Pb	0.03 %	30 %	
	S	0.01 %	60 %	
	Sn	0.005 %	50 %	
	Ti	0.01 %	30 %	
	Zn	0.01 %	30 %	

PF370-X Peroxide Fusion ICP-ES, any 1 element \$25.60

Requires at least 2 g per sample.

MERCURY

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	USD
AQ200-Hg	Hg – ICP-MS	0.01 ppm	50 ppm	\$16.65
CV400	Trace Hg – CVAA	0.01 ppm	100 ppm	\$13.15

WATER AND GENERAL CHEMISTRY

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	USD
GC002	pH and conductivity on solids			\$23.70
GC002-COND	Conductivity of solids	3 μS/cm		\$17.75
GC002-pH	pH of solids	0.1 units		\$14.10
GC901	Moisture (105°C)			\$18.10
GC902	Lattice water			\$38.20
TG001	LOI	0.1 %	100 %	\$12.90

OTHER TRACE AND ORE GRADE ANALYSES

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	USD
BR405	Select elements by HBr digestion, AAS Additional Element	Please call to discuss	3	\$37.95 + \$6.30
GC204	Ge or Ga by ICP-MS Second element	1 ppm	2000 ppm	\$29.95 + \$5.30
GC304	Ge or Ga by ICP-ES Second element	0.01 %	100 %	\$24.55 + \$5.30
GC320	Ba by $\mathrm{Na_2CO_3/K_2CO_3}$ fusion, ICP-ES	0.01 %	30 %	\$38.50
GC410	NiS	0.001 %	100 %	\$38.20
GC519	SiO2 gravimetric	0.1 %	100 %	\$36.65
GC520	Ba by Na ₂ CO ₃ /K ₂ CO ₃ fusion, gravity	0.1 %	100 %	\$38.50
GC806	FeO Titration	0.2 %	100 %	\$33.45
GC816	Zn Titration	1.00 %	100 %	\$41.80
GC817	Pb Titration	2.00 %	100 %	\$57.40
GC818	Fe Titration	1.00 %	100 %	\$62.20
GC819	Mn Titration	1.00 %	100 %	\$44.70
GC820	Cu Titration	1.00 %	100 %	\$66.15
GC840	F – Trace Level	10 ppm	1000 ppm	\$26.25
GC841	F – Ore Grade Surcharge samples > 15%	0.01 % 10 %	15 % 50 %	\$27.55 \$27.55
GC923	Pb or Zn Oxide Additional element	0.01 %	10 %	\$34.90 + \$5.25
PF100-B	В	3 ppm	2000 ppm	\$25.40

OTHER CHARGES

CODE	DESCRIPTION	USD
EN004	Environmental fee charge	\$1.20

BUREAU VERITAS LABORATORIES ARE RENOWNED FOR THE USE OF CUTTING EDGE TECHNOLOGIES TO OBTAIN THE LOW LEVELS OF DETECTION NEEDED TO MEET EXPLORATION GEOCHEMICAL REQUIREMENTS.

Methods in this section are designed for nonmineralized to weakly mineralized material. They have been optimized to provide trace to ultra-trace detection limits and maximum anomaly to background contrast. Modified aqua regia (1:1:1 HNO₃:HCI:H₂O) packages target labile elements in soil, to more aggressive multiacid digestions that are near total for almost all matrices. For projects with a gold focus, larger sample sizes are available to provide the most representative sample possible and mitigate nugget effects. This section also includes methods designed specifically for other media including biogeochemical exploration and natural water.

AQUA REGIA

Using a modified aqua regia digestion (1:1:1 HNO₃:HCI:H₂O), a partial digest can provide valuable information regarding mobile and easily soluble species, such as sulphides. Economically priced ICP-ES (AQ300) or ICP-ES/MS (AQ200) analyses are designed to complement your exploration project. Sample splits of 0.5 g, 15 g or 30 g are leached in modified aqua regia. Select a larger split size for more representative Au analysis. Refractory and graphitic samples can limit Au solubility.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AQ300	Aqua Regia	ICP-ES, 34 elements,	, 0.5 g	\$15.80
	Ag	0.3 ppm	100 ppm	
	Al	0.01 %	10 %	
	As	2 ppm	10000 ppm	
	В	20 ppm	2000 ppm	
	Ва	1 ppm	10000 ppm	
	Bi	3 ppm	2000 ppm	
	Ca	0.01 %	40 %	
	Cd	0.5 ppm	2000 ppm	
	Co	1 ppm	2000 ppm	
	Cr	1 ppm	10000 ppm	
	Cu	1 ppm	10000 ppm	
	Fe	0.01 %	40 %	
	Ga	5 ppm	1000 ppm	
	Hg	1 ppm	50 ppm	
	K	0.01 %	10 %	
	La	1 ppm	10000 ppm	
	Mg	0.01 %	30 %	
	Mn	2 ppm	10000 ppm	
	Мо	1 ppm	2000 ppm	
	Na	0.01 %	5 %	
	Ni	1 ppm	10000 ppm	
	Р	0.001 %	5 %	
	Pb	3 ppm	10000 ppm	
	S	0.05 %	10 %	
	Sb	3 ppm	2000 ppm	
	Sc	5 ppm	100 ppm	
	Sr	1 ppm	2000 ppm	
	Th	2 ppm	2000 ppm	
	Ti	0.001 %	5 %	
	TI	5 ppm	1000 ppm	
	U	8 ppm	2000 ppm	
	V	1 ppm	10000 ppm	
	W	2 ppm	100 ppm	
	Zn	1 ppm	10000 ppm	

Aqua Regia digestion is considered a partial digestion. Solubility of some elements will be limited by mineral species present.

CODE ELEMENT DETECTION LIMIT UPPER LIMIT USD AQ200 Aqua Regia ICP-ES/MS, 37 elements, 0.5 g \$22.65 AQ201 Aqua Regia ICP-ES/MS, 37 elements, 30 g \$34.65 Ag 0.1 ppm 100 ppm AI 0.01 % 10 % As 0.5 ppm 100000 ppm Au 0.5 ppb 100000 ppm Ba 1 ppm 10000 ppm Ba 1 ppm 10000 ppm Ba 1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 ppm 50 ppm K 0.01 ppm 10000 ppm Mg 0.01 ppm 10000 ppm Na 0.01 ppm </th <th></th> <th></th> <th></th> <th></th> <th></th>					
AQ201 Aqua Regia ICP-ES/MS, 37 elements, 15 g \$28.70 AQ202 Aqua Regia ICP-ES/MS, 37 elements, 30 g \$34.65 Ag 0.1 ppm 100 ppm AI 0.01 % 10 % As 0.5 ppm 100000 ppm Au 0.5 ppb 100000 ppm Ba 1 ppm 10000 ppm Ba 1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 % 30 % Mn 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm Se <	CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AQ202 Aqua Regia ICP-ES/MS, 37 elements, 30 g Ag 0.1 ppm 100 ppm Al 0.01 % 10 % As 0.5 ppb 100000 ppb B* 20 ppm 2000 ppm Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Co 0.1 ppm 10000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 ppm 10000 ppm K 0.01 ppm 10000 ppm K 0.01 ppm 10000 ppm Mg 0.01 ppm 10000 ppm Mg 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 5 % Ni 0.1 ppm 10000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm So 0.1 ppm 10000 ppm So 0.1 ppm 10000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm So 0.1 ppm 10000 ppm So 0.1 ppm 10000 ppm Th 0.1 ppm 10000 ppm Th 100 ppm Ti 100 ppm	AQ200	Aqua Regia	ICP-ES/MS, 37 elem	ents, 0.5 g	\$22.65
Ag 0.1 ppm 100 ppm Al 0.01 % 10 % As 0.5 ppb 100000 ppm Au 0.5 ppb 100000 ppm B* 20 ppm 2000 ppm Ba 1 ppm 10000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 10000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm Sc 0.5 ppm 100 ppm Fe 0.2 ppm <	AQ201	Aqua Regia	ICP-ES/MS, 37 elem	ents, 15 g	\$28.70
AI 0.01 % 10 % As 0.5 ppm 10000 ppm Au 0.5 ppb 100000 ppb B* 200 ppm 2000 ppm Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mg 0.01 % 5 % Ni 0.1 ppm 2000 ppm Na 0.001 % 5 % Pb 0.1 ppm 10000 ppm Sc 0.1 ppm 10000 ppm Sc 0.1 ppm 2000 ppm Sc 0.1 ppm 10000 ppm Th 0.00 ppm Th 0.1 ppm 2000 ppm Th 0.00 ppm Th 0.1 ppm 1000 ppm Th 0.1 ppm 1000 ppm Th 0.1 ppm 1000 ppm Th 0.1 ppm 2000 ppm Th 0.1 ppm 2000 ppm Th 0.1 ppm 100 ppm Th 0.1 ppm 1000 ppm Th 0.1 ppm 2000 ppm Th 0.1 ppm 2000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % Ti 0.1 ppm 2000 ppm Ti 0.001 % 5 % Ti 0.1 ppm 2000 ppm	AQ202	Aqua Regia	ICP-ES/MS, 37 elem	ents, 30 g	\$34.65
As 0.5 ppb 10000 ppm Au 0.5 ppb 100000 ppb B* 20 ppm 2000 ppm Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 10000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm		Ag	0.1 ppm	100 ppm	
Au 0.5 ppb 100000 ppb B* 20 ppm 2000 ppm Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 10000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm Se 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.1 ppm		Al	0.01 %	10 %	
B* 20 ppm 2000 ppm Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm K 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm		As	0.5 ppm	10000 ppm	
Ba 1 ppm 10000 ppm Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 10000 ppm Cr 1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 10000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 % 5 % Pb 0.1 ppm 2000 ppm Sc 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm Sc 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm		Au		100000 ppb	
Bi 0.1 ppm 2000 ppm Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 10000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.1 ppm 2000 ppm		B *	20 ppm	2000 ppm	
Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm T 1 ppm 2000 ppm T 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm		Ва	1 ppm	10000 ppm	
Ca 0.01 % 40 % Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm Sc 0.1 ppm 2000 ppm Sc 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.1 ppm 1000 ppm Ti 0.1 ppm 2000 ppm		Bi	0.1 ppm	2000 ppm	
Cd 0.1 ppm 2000 ppm Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.5 ppm 100 ppm Se 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm Ti 0.1 ppm 1000 ppm Ti 0.1 ppm 2000 ppm <t< td=""><th></th><th>Ca</th><td></td><td>40 %</td><td></td></t<>		Ca		40 %	
Co 0.1 ppm 2000 ppm Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm Ti 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm Ti 0.1 ppm 2000 ppm <tr< td=""><th></th><th>Cd</th><td>0.1 ppm</td><td>2000 ppm</td><td></td></tr<>		Cd	0.1 ppm	2000 ppm	
Cr 1 ppm 10000 ppm Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm Ti 0.1 ppm 2000 ppm		Со			
Cu 0.1 ppm 10000 ppm Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm Sc 0.5 ppm 1000 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm Ti 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Cr			
Fe 0.01 % 40 % Ga 1 ppm 1000 ppm Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm Ti 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Cu			
Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 10 ppm Te 0.2 ppm 1000 ppm Ti 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Fe			
Hg 0.01 ppm 50 ppm K 0.01 % 10 % La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.01 ppm 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sc 0.5 ppm 10 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Ti 0.001 % 5 % TI 0.1 ppm 2000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Ga	1 ppm	1000 ppm	
La 1 ppm 10000 ppm Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Hg	0.01 ppm	50 ppm	
Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		K	0.01 %	10 %	
Mg 0.01 % 30 % Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		La	1 ppm	10000 ppm	
Mn 1 ppm 10000 ppm Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Mg	0.01 %		
Mo 0.1 ppm 2000 ppm Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm			1 ppm	10000 ppm	
Na 0.001 % 5 % Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Мо			
Ni 0.1 ppm 10000 ppm P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm					
P 0.001 % 5 % Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.01 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Ni	0.1 ppm	10000 ppm	
Pb 0.1 ppm 10000 ppm S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.01 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		P	• • • • • • • • • • • • • • • • • • • •		
S 0.05 % 10 % Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Pb			
Sb 0.1 ppm 2000 ppm Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		S	•••	··	
Sc 0.1 ppm 100 ppm Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm					
Se 0.5 ppm 100 ppm Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Sc	•••		
Sr 1 ppm 2000 ppm Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Se			
Te 0.2 ppm 1000 ppm Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm					
Th 0.1 ppm 2000 ppm Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm		Te			
Ti 0.001 % 5 % TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm					
TI 0.1 ppm 1000 ppm U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm				•••	
U 0.1 ppm 2000 ppm V** 1 ppm 10000 ppm					
V** 1 ppm 10000 ppm					
- 11		W			
Zn 1 ppm 10000 ppm					

^{*}Detection limit = 1 ppm for 15/30 g analysis

^{**}Soils = 2 ppm

ULTRA-TRACE BY ICP-MS

ICP-MS analysis of a 0.5, 15 or 30 g sample after modified aqua regia digestion (1:1:1 $\rm HNO_3$: $\rm HCl:H_2O$) for low to ultra-low determination on soils, sediments and lean rocks. Larger splits (15 or 30 g) give a more representative analysis of elements subject to nugget effect (e.g., Au). Gold solubility can be limited in refractory and graphitic samples. The lead isotope method adds $^{204}\rm Pb$, $^{206}\rm Pb$, $^{207}\rm Pb$, $^{208}\rm Pb$. This data is suitable for geochemical exploration of U and other commodities where gross differences in non-radiogenic to radiogenic Pb ratios are of benefit.

CODE	FLEMENT	DETECTION LIMIT	UDDED LIMIT	USD
CODE	ELEWENT	DETECTION LIMIT	UPPER LIMIT	עפט
AQ250	Aqua Regia	ICP-ES/MS, 37 elem	ents, 0.5 g	\$27.95
AQ251	Aqua Regia	ICP-ES/MS, 37 elem	ents, 15 g	\$33.95
AQ252	Aqua Regia	ICP-ES/MS, 37 elem	ents, 30 g	\$40.00
	Ag	2 ppb	100000 ppb	
	Al	0.01 %	10 %	
	As	0.1 ppm	10000 ppm	
	Au	0.2 ppb	100000 ppb	
	B *	20 ppm	2000 ppm	
	Ва	0.5 ppm	10000 ppm	
	Bi	0.02 ppm	2000 ppm	
	Ca	0.01 %	40 %	
	Cd	0.01 ppm	2000 ppm	
	Co	0.1 ppm	2000 ppm	
	Cr	0.5 ppm	10000 ppm	
	Cu	0.01 ppm	10000 ppm	
	Fe	0.01 %	40 %	
	Ga	0.1 ppm	1000 ppm	
	Hg	5 ppb	50000 ppb	
	K	0.01 %	10 %	
	La	0.5 ppm	10000 ppm	
	Mg	0.01 %	30 %	
	Mn	1 ppm	10000 ppm	
	Мо	0.01 ppm	2000 ppm	
	Na	0.001 %	5 %	
	Ni	0.1 ppm	10000 ppm	
	Р	0.001 %	5 %	
	Pb	0.01 ppm	10000 ppm	
	S	0.02 %	10 %	
	Sb	0.02 ppm	2000 ppm	
	Sc	0.1 ppm	100 ppm	
	Se	0.1 ppm	100 ppm	
	Sr	0.5 ppm	2000 ppm	
	Te	0.02 ppm	1000 ppm	
	Th	0.1 ppm	2000 ppm	
	Ti	0.001 %	5 %	
	TI	0.02 ppm	1000 ppm	
	U	0.1 ppm	2000 ppm	
	V	1 ppm	10000 ppm	
	W	0.1 ppm	100 ppm	
	Zn	0.1 ppm	10000 ppm	

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AQ250-EXT		Extended Pkg, 53 e	elements, 0.5 g	\$32.70
AQ251-E	EXT	Extended Pkg, 53 e	elements, 15 g	\$38.70
AQ252-EXT		Extended Pkg, 53 e	elements, 30 g	\$44.75
	Be	0.1 ppm	1000 ppm	
	Се	0.1 ppm	2000 ppm	
	Cs	0.02 ppm	2000 ppm	
	Ge	0.1 ppm	100 ppm	
	Hf	0.02 ppm	1000 ppm	
	In	0.02 ppm	1000 ppm	
	Li	0.1 ppm	2000 ppm	
	Nb	0.02 ppm	2000 ppm	
	Pd	10 ppb	100000 ppb	
	Pt	2 ppb	100000 ppb	
	Rb	0.1 ppm	2000 ppm	
	Re	1 ppb	100000 ppb	
	Sn	0.1 ppm	100 ppm	
	Та	0.05 ppm	2000 ppm	
	Υ	0.01 ppm	2000 ppm	
	Zr	0.1 ppm	2000 ppm	

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
+ REE	Rare Earth,	Add on		\$9.15
	Dy	0.02 ppm	2000 ppm	
	Er	0.02 ppm	2000 ppm	
	Eu	0.02 ppm	2000 ppm	
	Gd	0.02 ppm	2000 ppm	
	Но	0.02 ppm	2000 ppm	
	Lu	0.02 ppm	2000 ppm	
	Nd	0.02 ppm	2000 ppm	
	Pr	0.02 ppm	2000 ppm	
	Sm	0.02 ppm	2000 ppm	
	Tb	0.02 ppm	2000 ppm	
	Tm	0.02 ppm	2000 ppm	
	Yb	0.02 ppm	2000 ppm	
+ ISO	Lead Isotop	e, Add on		\$18.90

+ PGM Pt Pd, Add on

\$3.05

^{*}Detection limit = 1 ppm for 15/30 g analysis

MULTI-ACID

Multi-acid digestion packages are capable of dissolving most minerals. We offer a choice of ICP-ES (MA300), ICP-ES/MS (MA200) or Ultra-trace ICP-ES/MS (MA250) analysis to give near total values for most elements. A 0.25 g split is heated in ${\rm HNO_3}, {\rm HCIO_4}$ and HF to fuming and taken to dryness. The residue is dissolved in HCI.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
MA300	Multi-Acid I	CP-ES, 35 elements,	0.25 g	\$20.90
	Ag	0.5 ppm	200 ppm	
	Al	0.01 %	20 %	
	As	5 ppm	10000 ppm	
	Ва	1 ppm	10000 ppm	
	Be	1 ppm	1000 ppm	
	Bi	5 ppm	4000 ppm	
	Ca	0.01 %	40 %	
	Cd	0.4 ppm	4000 ppm	
	Co	2 ppm	4000 ppm	
	Cr	2 ppm	10000 ppm	
	Cu	2 ppm	10000 ppm	
	Fe	0.01 %	60 %	
	K	0.01 %	10 %	
	La	2 ppm	2000 ppm	
	Mg	0.01 %	30 %	
	Mn	5 ppm	10000 ppm	
	Мо	2 ppm	4000 ppm	
	Na	0.01 %	10 %	
	Nb	2 ppm	2000 ppm	
	Ni	2 ppm	10000 ppm	
	Р	0.002 %	5 %	
	Pb	5 ppm	10000 ppm	
	S	0.1 %	10 %	
	Sb	5 ppm	4000 ppm	
	Sc	1 ppm	200 ppm	
	Sn	2 ppm	2000 ppm	
	Sr	2 ppm	10000 ppm	
	Th	2 ppm	4000 ppm	
	Ti	0.01 %	10 %	
	U	20 ppm	4000 ppm	
	V	2 ppm	10000 ppm	
	W	4 ppm	200 ppm	
	Υ	2 ppm	2000 ppm	
	Zn	2 ppm	10000 ppm	
	Zr	2 ppm	2000 ppm	
AQ200-H	lg	Aqua Regia ICP-MS	S, add-on	\$16.65
	Hg	0.01 ppm	50 ppm	

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
MA200	Multi-Acid I	CP-ES/MS, 45 eleme	nts, 0.25 g	\$43.30
	Ag	0.1 ppm	200 ppm	
	Al	0.01 %	20 %	
	As	1 ppm	10000 ppm	
	Ва	1 ppm	10000 ppm	
	Be	1 ppm	1000 ppm	
	Bi	0.1 ppm	4000 ppm	
	Са	0.01 %	40 %	
	Cd	0.1 ppm	4000 ppm	
	Ce	1 ppm	40 %	
	Co	0.2 ppm	4000 ppm	
	Cr	1 ppm	10000 ppm	
	Cu	0.1 ppm	10000 ppm	
	Fe	0.01 %	60 %	
	Hf	0.1 ppm	1000 ppm	
	In	0.05 ppm	1000 ppm	
	K	0.01 %	10 %	
	La	0.1 ppm	2000 ppm	
	Li	0.1 ppm	2000 ppm	
	Mg	0.01 %	30 %	
	Mn	1 ppm	10000 ppm	
	Мо	0.1 ppm	4000 ppm	
	Na	0.001 %	10 %	
	Nb	0.1 ppm	2000 ppm	
	Ni	0.1 ppm	10000 ppm	
	Р	0.001 %	5 %	
	Pb	0.1 ppm	10000 ppm	
	Rb	0.1 ppm	2000 ppm	
	Re	0.005 ppm	100 ppm	
	S	0.1 %	10 %	
	Sb	0.1 ppm	4000 ppm	
	Sc	1 ppm	200 ppm	
	Se	1 ppm	1000 ppm	
	Sn	0.1 ppm	2000 ppm	
	Sr	1 ppm	10000 ppm	
	Та	0.1 ppm	2000 ppm	
	Te	0.5 ppm	1000 ppm	
	Th	0.1 ppm	4000 ppm	
	Ti	0.001 %	10 %	
	TI	0.5 ppm	10000 ppm	
	U	0.1 ppm	4000 ppm	
	V	4 ppm	10000 ppm	
	W	0.1 ppm	200 ppm	
	Υ	0.1 ppm	2000 ppm	
	Zn	1 ppm	10000 ppm	
	Zr	0.1 ppm	2000 ppm	
AQ200-H	lg	Aqua Regia ICP-MS	S, add-on	\$16.65
	Hg	0.01 ppm	50 ppm	

Digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta, Zr and REEs. Volatilization during fuming may result in loss of As, S, Se and Sb.

ULTRA-TRACE BY ICP-ES/MS

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	ELEMENT	DETECTION LIMIT	UPPER LIMIT	US
MA250			Ultra-trace ICP-ES/	/IS, 59 elements, 0.25 g			\$53.8
	Ag	20 ppb	200000 ppb	Nb	0.04 ppm	2000 ppm	
	Al	0.01 %	20 %	Nd	0.1 ppm	2000 ppm	
	As	0.2 ppm	10000 ppm	Ni	0.1 ppm	10000 ppm	
	Ва	1 ppm	10000 ppm	P	0.001 %	5 %	
	Be	1 ppm	1000 ppm	Pb	0.02 ppm	10000 ppm	
	Bi	0.04 ppm	4000 ppm	Pr	0.1 ppm	2000 ppm	
	Ca	0.01 %	40 %	Rb	0.1 ppm	2000 ppm	
	Cd	0.02 ppm	4000 ppm	Re	0.002 ppm	100 ppm	
	Се	0.02 ppm	2000 ppm	S	0.04 %	10 %	
	Со	0.2 ppm	4000 ppm	Sb	0.02 ppm	4000 ppm	
	Cr	1 ppm	10000 ppm	Sc	0.1 ppm	200 ppm	
	Cs	0.1 ppm	2000 ppm	Se	0.3 ppm	1000 ppm	
	Cu	0.1 ppm	10000 ppm	Sm	0.1 ppm	2000 ppm	
	Dy	0.1 ppm	2000 ppm	Sn	0.1 ppm	2000 ppm	
	Er	0.1 ppm	2000 ppm	Sr	1 ppm	10000 ppm	
	Eu	0.1 ppm	2000 ppm	Та	0.1 ppm	2000 ppm	
	Fe	0.01 %	60 %	Tb	0.1 ppm	2000 ppm	
	Ga	0.02 ppm	100 ppm	Te	0.05 ppm	1000 ppm	
	Gd	0.1 ppm	2000 ppm	Th	0.1 ppm	4000 ppm	
	Hf	0.02 ppm	1000 ppm	Ti	0.001 %	10 %	
	Но	0.1 ppm	2000 ppm	TI	0.05 ppm	10000 ppm	
	In	0.01 ppm	1000 ppm	Tm	0.1 ppm	2000 ppm	
	K	0.01 %	10 %	U	0.1 ppm	4000 ppm	
	La	0.1 ppm	2000 ppm	V	2 ppm	10000 ppm	
	Li	0.1 ppm	2000 ppm	W	0.1 ppm	200 ppm	
	Lu	0.1 ppm	2000 ppm	Y	0.1 ppm	2000 ppm	
	Mg	0.01 %	30 %	Yb	0.1 ppm	2000 ppm	
	Mn	1 ppm	10000 ppm	Zn	0.2 ppm	10000 ppm	
	Мо	0.05 ppm	4000 ppm	Zr	0.2 ppm	2000 ppm	
	Na	0.001 %	10 %				
AQ200-H	lg		Aqua Regia ICP-MS	, Add-on			\$16.6
	Hg	0.01 ppm	50 ppm				

Digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta, Zr and REEs. Volatilization during fuming may result in loss of As, S, Se and Sb.

LOW GRADE ORE ANALYSIS

The following multi-element assays provide an expanded range of analysis by combining the geochemical analysis MA200 and AQ200 with the upper limit precision of the assay packages MA370 and AQ370. AQ270 and MA270 combine both ICP-ES and ICP-MS analysis to extend the upper limits and provide a broader spectrum of elements. Intended use of this package is for exploration not resource calculations.

AQUA REGIA ICP-ES/MS

Same digestion as AQ370 but uses both ICPES and ICP-MS to expand the detection limits and increase the number of elements analyzed.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
AQ270	Aqua Regia	ICP-ES/MS, 34 eleme	ents	\$39.55
	Ag	0.5 ppm	1000 ppm	
	Al	0.01 %	40 %	
	As	5 ppm	10000 ppm	
	Ва	5 ppm	5000 ppm	
	Bi	0.5 ppm	10000 ppm	
	Ca	0.01 %	40 %	
	Cd	0.5 ppm	10000 ppm	
	Со	0.5 ppm	10000 ppm	
	Cr	0.5 ppm	50000 ppm	
	Cu	0.5 ppm	100000 ppm	
	Fe	0.01 %	40 %	
	Ga	5 ppm	5000 ppm	
	Hg	0.05 ppm	10000 ppm	
	K	0.01 %	40 %	
	La	0.5 ppm	50000 ppm	
	Mg	0.01 %	40 %	
	Mn	5 ppm	200000 ppm	
	Мо	0.5 ppm	50000 ppm	
	Na	0.01 %	25 %	
	Ni	0.5 ppm	100000 ppm	
	Р	0.001 %	25 %	
	Pb	0.5 ppm	40000 ppm	
	S	0.05 %	30 %	
	Sb	0.5 ppm	50000 ppm	
	Sc	0.5 ppm	500 ppm	
	Se	2 ppm	500 ppm	
	Sr	5 ppm	10000 ppm	
	Th	0.5 ppm	10000 ppm	
	Ti	0.001 %	10 %	
	TI	0.5 ppm	5000 ppm	
	U	0.5 ppm	10000 ppm	
	V	10 ppm	50000 ppm	
	W	0.5 ppm	10000 ppm	
	Zn	5 ppm	200000 ppm	

Requires at least 2 g per sample.

MULTI-ACID ICP-ES/MS

Same digestion as MA370 but includes ICP-ES and ICP-MS analysis.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD		
MA270	Multi-acid I	CP-ES/MS, 41 elemer	nts	\$55.75		
	Ag	0.5 ppm	1500 ppm			
	Al	0.01 %	40 %			
	As	5 ppm	100000 ppm			
	Ва	5 ppm	50000 ppm			
	Ве	5 ppm	5000 ppm			
	Bi	0.5 ppm	20000 ppm			
	Са	0.01 %	50 %			
	Cd	0.5 ppm	20000 ppm			
	Ce	5 ppm	10000 ppm			
	Co	1 ppm	20000 ppm			
	Cr	1 ppm	50000 ppm			
	Cu	0.5 ppm	100000 ppm			
	Fe	0.01 %	60 %			
	Hf	0.5 ppm	5000 ppm			
	K	0.01 %	40 %			
	La	0.5 ppm	10000 ppm			
	Li	0.5 ppm	10000 ppm			
	Mg	0.01 %	40 %			
	Mn	5 ppm	200000 ppm			
	Мо	0.5 ppm	50000 ppm			
	Na	0.01 %	25 %			
	Nb	0.5 ppm	10000 ppm			
	Ni	0.5 ppm	100000 ppm			
	P	0.01 %	25 %			
	Pb	0.5 ppm	100000 ppm			
	Rb	0.5 ppm	10000 ppm			
	S	0.05 %	30 %			
	Sb	0.5 ppm	10000 ppm			
	Sc	1 ppm	1000 ppm			
	Se	5 ppm	5000 ppm			
	Sn	0.5 ppm	10000 ppm			
	Sr	5 ppm	10000 ppm			
	Та	0.5 ppm	2000 ppm			
	Th	0.5 ppm	20000 ppm			
	Ti	0.001 %	10 %			
	U	0.5 ppm	20000 ppm			
	V	10 ppm	50000 ppm			
	W	0.5 ppm	10000 ppm			
	Υ	0.5 ppm	5000 ppm			
	Zn	5 ppm	400000 ppm			
	Zr	0.5 ppm	10000 ppm			

Digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn Sn, Ta, Zr and REEs. Volatilization during fuming may result in loss of As, S, Se and Sb.

VEGETATION ANALYSIS

We offer two types of vegetation preparations depending on the elements of interest and application of the results. The first is an aqua regia digestion on the raw material. This method is best where volatile elements such as As, Se, and Hg are of interest. The second type of preparation involves the ashing of plant material followed by aqua regia digestion. Ashing is effectively a preconcentration step that allows for the detection of low level precious metals that would otherwise be below instrument detection.

PREPARATION

For dry plant material free of any soil. Importation permits may apply; contact the laboratory prior to shipment.

CODE	DESCRIPTION	USD
DISPL	Dispose of pulps	\$0.25
SVRJT	Saving all or part of reject fraction	\$1.40
VA475	Ashing 50 g dry vegetation at 475°C	\$14.65
VGMAS	Dry and macerate vegetation, per 100 g	\$14.65
VGWSH	Wash plant samples with demineralized water, dry at 60°C, per 100 g	\$4.25
WGHT	Weigh samples	\$0.95

PLANT MATERIAL ANALYSIS

Analysis of vegetation samples using a 1 g or 5 g split digested in HNO₃ then aqua regia and analyzed by ICP-MS for ultra low detection limits. Washing with demineralized water is recommended if samples are coated with inorganic material. (See VGWSH above).

CODE	ELEMENT	DETECTION LIMIT	UPPER LIM	IT	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
VG101				Dry Vegetation ICP-MS, 37 element	ents, 1 g			\$ 41.50
VG105		Dry Vegetation ICP-MS, 37 elements, 5 g				\$ 47.00		
	Ag	2 ppb	100000 ppb		Мо	0.01 ppm	2000 ppm	
	Al	0.01 %	10 %		Na	0.01 %	5 %	
	As	0.1 ppm	10000 ppm		Ni	0.1 ppm	10000 ppm	
	Au	0.2 ppb	100000 ppb		P	0.001 %	5 %	
	В	1 ppm	2000 ppm		Pb	0.01 ppm	10000 ppm	
	Ва	0.1 ppm	10000 ppm		S	0.05 %	10 %	
	Bi	0.02 ppm	2000 ppm		Sb	0.02 ppm	2000 ppm	
	Са	0.01 %	40 %		Sc	0.1 ppm	100 ppm	
	Cd	0.01 ppm	2000 ppm		Se	0.1 ppm	100 ppm	
	Со	0.01 ppm	2000 ppm		Sr	0.5 ppm	2000 ppm	
	Cr	0.1 ppm	10000 ppm		Те	0.02 ppm	10000 ppm	
	Cu	0.01 ppm	10000 ppm		Th	0.1 ppm	2000 ppm	
	Fe	0.001 %	40 %		Ti	10 ppm	50000 ppm	
	Ga	0.1 ppm	1000 ppm		TI	0.02 ppm	1000 ppm	
	Hg	1 ppb	50000ppb		U	0.01 ppm	2000 ppm	
	K	0.01 %	10 %		V	2 ppm	10000 ppm	
	La	0.01 ppm	10000 ppm		W	0.1 ppm	100 ppm	
	Mg	0.001 %	30 %		Zn	0.1 ppm	10000 ppm	
	Mn	1 ppm	10000 ppm					
+ REE		Rare Earth, add-on		'				\$9.1
+ PGM		Pt Pd, add-on						\$3.0
+ ISO	Lead Isotope, add-on					\$18.9		
VG104		Ash Ultra-trace ICP-	MS, 36 eleme	nts, 0.5 g (same elements & detect	tion limits as A	Q250 excluding Hg, p	29)	\$41.5
VG104-EXT		T Ash Extended suite, 52 elements, 0.5 g					\$46.2	

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
VG101-EXT	Dry Extended suite, 53 elements	, 1 g		\$46.25
VG105-EXT	Dry Extended suite, 53 elements	. 5 g		\$51.75
	Ве	0.1 ppm	1000 ppm	
	Се	0.1 ppm	2000 ppm	
	Cs	0.02 ppm	2000 ppm	
	Ge	0.01 ppm	100 ppm	
	Hf	0.001 ppm	1000 ppm	
	In	0.02 ppm	1000 ppm	
	Li	0.01 ppm	2000 ppm	
	Nb	0.01 ppm	2000 ppm	
	Pd	2 ppb	100000 ppb	
	Pt	1 ppb	100000 ppb	
	Rb	0.1 ppm	2000 ppm	
	Re	1 ppb	10000 ppm	
	Sn	0.02 ppm	100 ppm	
	Та	0.001 ppm	2000 ppm	
	Y	0.001 ppm	2000 ppm	
	Zr	0.01 ppm	2000 ppm	
+ ISO	Lead Isotope, Add on			\$18.90

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
+ REE	Rare Earth elements			\$9.15
	Dy	0.02 ppm	2000 ppm	
	Er	0.02 ppm	2000 ppm	
	Eu	0.02 ppm	2000 ppm	
	Gd	0.02 ppm	2000 ppm	
	Но	0.02 ppm	2000 ppm	
	Lu	0.02 ppm	2000 ppm	
	Nd	0.02 ppm	2000 ppm	
	Pr	0.02 ppm	2000 ppm	
	Sm	0.02 ppm	2000 ppm	
	Tb	0.02 ppm	2000 ppm	
	Tm	0.02 ppm	2000 ppm	
	Yb	0.02 ppm	2000 ppm	

GENERATIVE EXPLORATION PACKAGE

This package has been designed to provide a suite of elements common in rocks associated with hydrothermal systems. It represents excellent value for applications where only ore forming elements are of interest.

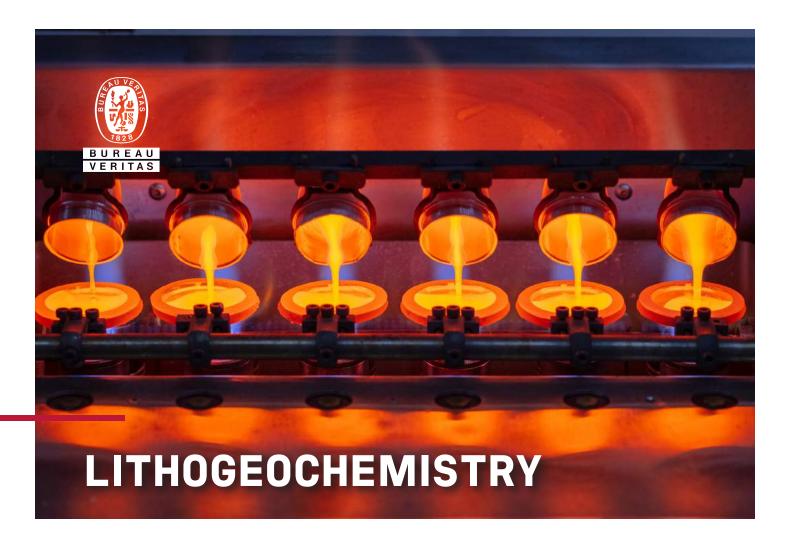
CODE	ELEMENT					
GENX10	Suite of elements common in rocks associated with hydrothermal systems					
	Au 0.005 - 10 ppm					
	Ag 0.3 - 100 ppm As 2 - 10,000 ppm					
	Bi 3 - 2,000 ppm	Au determined by FA430 (30 g Fire Assay/AAS finish) Hg determined by Cold Vapour/AA				
	Cu 1 - 10,000 ppm	All other elements determined by AQ300 Digest with ICP analysis				
	Pb 3 - 10,000 ppm	All other determined by According to Will Tor analysis				
	Hg 0.01 - 100 ppm					
	Mo 1 - 2,000 ppm					
	Sb 3 - 2,000 ppm					
	Zn 1 - 10,000 ppm					

COMPLETE EXPLORATION ACID DIGESTION PACKAGE

This package provides additional elements by aqua regia digestion normally volatilized in the multi-acid digestion.

CODE	DESCRIPTION	USD
GEO05	MA250 + AQ250 (7 elements: As, Au, Hg, Sb, Se, Te, Tl)	\$57.55
+ Au	Fire Assay (FA430: 30 g Fire Assay/AAS finish), add-on	\$19.75

OTHER CHARGES


CODE	DESCRIPTION	USD
EN004	Environmental fee charge	\$1.20

ANALYSIS OF NATURAL WATERS

Surface and groundwater surveys are an effective means for exploration of remote and blind ore deposits.

Analysis of water geochemical parameters, including, trace metals, pH, electrical conductivity, alkalinity, cations and anions, provides the necessary parameters for complete characterization of water samples. Complete water characterization allows for the determination of not only the type of water (i.e., CaSO₄ or NaCl), but how the type of water relates to ore deposit pathfinder elements. Contact us for details on analytical options.

LITHOGEOCHEMICAL METHODS EMPLOY FUSION TECHNIQUES TO COMPLETELY DIGEST MOST REFRACTORY MATRICES. THESE METHODS ACCOUNT FOR STRUCTURAL WATER AND ARE THE ONLY MULTI-ELEMENT METHODS THAT PROVIDE QUANTITATIVE DETERMINATIONS FOR SILICA.

The determinations from these methods are the most suitable for constructing rock classification diagrams, molar element ratios and alteration indicies. Determination by ICP-ES, ICP-MS, XRF, and laser ablation options are available to suit almost all elements, concentration ranges, and professional preferences.

WHOLE ROCK MAJOR AND MINOR ELEMENTS BY ICP-ES

Lithium borate fusion, a highly aggressive dissolution, is effective for most refractory and resistive mineral phases. When coupled with ICP-ES/MS or XRF analysis, the methods provide excellent determination of the total element content.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
LF300	Star	ndard suite of major o	oxides	\$43.30
	SiO ₂	0.01 %	100 %	
	Al ₂ O ₃	0.01 %	100 %	
	Cr ₂ O ₃	0.002 %	10 %	
	CaO	0.01 %	100 %	
	Fe ₂ O ₃	0.04 %	100 %	
	K ₂ O	0.01 %	100 %	
	MgO	0.01 %	100 %	
	MnO	0.01 %	30 %	
	Na₂O	0.01 %	100 %	
	P ₂ O ₅	0.01 %	100 %	
	TiO ₂	0.01 %	10 %	
	Ва	5 ppm	50,000 ppm	
	Nb	5 ppm	1,000 ppm	
	Ni	20 ppm	10,000 ppm	
	Sc	1 ppm	10,000 ppm	
	Sr	2 ppm	50,000 ppm	
	Υ	3 ppm	50,000 ppm	
	Zr	5 ppm	50,000 ppm	
	LOI	0.1 %	100 %	
	Sum	0.01 %	100 %	
LF300-X		Any 1 element		\$27.95
LF300-EXT		Extended package		\$48.05
	Се	30 ppm	50,000 ppm	
	Co	20 ppm	10,000 ppm	
	Cu	5 ppm	10,000 ppm	
	Zn	5 ppm	10,000 ppm	

WHOLE ROCK MAJOR AND MINOR ELEMENTS WITH C & S

CODE		USD
LF302	Major oxides ICP-ES, 20 elements Package including LF300 + TC000 (C & S)	\$59.05
LF302-EXT	Major oxides ICP-ES, 24 elements Package including LF300-EXT + TC000 (C & S)	\$63.80

TOTAL WHOLE ROCK CHARACTERIZATION

These packages combine LF300 and LF100 into a single fusion (LF200) and other specifically selected methods to provide results of virtually all elements present in a geological sample.

CODE		USD
LF200	Package including (LF100 + LF302)	\$86.95
LF200A	Same as LF200 without TC000 (C&S)	\$73.60
LF202	Package including (LF100-EXT + LF302)	\$97.40
LF600*	Package including (LF100-EXT + XF700 + TC000)	\$113.25

TRACE ELEMENTS BY ICP-MS

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
LF100	Refracto	ry and Rare Earth ele	ements only	\$43.25
	Ва	1 ppm	50,000 ppm	
	Be	1 ppm	10,000 ppm	
	Ce	0.1 ppm	50,000 ppm	
	Co	0.2 ppm	10,000 ppm	
	Cs*	0.1 ppm	1,000 ppm	
	Dy	0.05 ppm	10,000 ppm	
	Er	0.03 ppm	10,000 ppm	
	Eu	0.02 ppm	10,000 ppm	
	Ga	0.5 ppm	10,000 ppm	
	Gd	0.05 ppm	10,000 ppm	
	Hf	0.1 ppm	10,000 ppm	
	Но	0.02 ppm	10,000 ppm	
	La	0.1 ppm	50,000 ppm	
	Lu	0.01 ppm	10,000 ppm	
	Nb*	0.1 ppm	1,000 ppm	
	Nd	0.3 ppm	10,000 ppm	
	Pr	0.02 ppm	10,000 ppm	
	Rb*	0.1 ppm	1,000 ppm	
	Sm	0.05 ppm	10,000 ppm	
	Sn	1 ppm	10,000 ppm	
	Sr	0.5 ppm	50,000 ppm	
	Ta*	0.1 ppm	1,000 ppm	
	Tb	0.01 ppm	10,000 ppm	
	Th	0.2 ppm	10,000 ppm	
	Tm	0.01 ppm	10,000 ppm	
	U	0.1 ppm	10,000 ppm	
	V	8 ppm	10,000 ppm	
	W	0.5 ppm	10,000 ppm	
	Υ	0.1 ppm	50,000 ppm	
	Yb	0.05 ppm	10,000 ppm	
	Zr	0.1 ppm	50,000 ppm	
LF100-X	Lithium bor	rate fusion ICP-MS, a	ny 1 element	\$27.95
LF100-EX		elements ICP-MS, 45		\$55.50
Li 100-L)	`' Packa	age including (LF100	+ AQ200)	Ψ00.00
	Ag	0.1 ppm	100 ppm	
	As	1 ppm	10,000 ppm	
	Au	0.5 ppb	100,000 ppb	
	Bi	0.1 ppm	2,000 ppm	
	Cd	0.1 ppm	2,000 ppm	
	Cu	0.1 ppm	10,000 ppm	
	Hg	0.01 ppm	50 ppm	
	Мо	0.1 ppm	2,000 ppm	
	Ni	0.1 ppm	10,000 ppm	
	Pb	0.1 ppm	10,000 ppm	
	Sb	0.1 ppm	2000 ppm	
	Se	0.5 ppm	100 ppm	
	TI	0.1 ppm	1,000 ppm	
			· ·	

Requires at least 5 g per sample.

^{*}Requires at least 20 g per sample.

CARBON & SULPHUR ANALYSIS

CODE	DESCRIPTION	DETECTION LIMIT	UPPER LIMIT	USD
TC000	IR Combustion – C IR Combustion – S Surcharge samples > 20% (S)	0.02 % 0.02 % 20 %	100 % 20 % 50 %	\$26.35 + \$9.65
TC000-C	IR Combustion – Total C	0.02 %	100 %	\$22.45
TC005-GRA	Graphite C	0.02 %	20 %	\$47.60
TC906	Inorganic Carbon by Coulometry Method	0.01 %	100 %	\$26.20
TC006	Inorganic Carbon (Leco analysis of CO_2 evolution using perchloric acid)	0.08 %	100 %	\$26.35
TC005-ORG	Organic C Calculation requiring TC000-C, TC005-GRA and TC006	0.02 %	100 %	\$47.80
TC000-S	IR Combustion – Total S Surcharge samples > 20% (S)	0.02 % 20 %	20 % 50 %	\$22.45 + \$9.65
TC008-SO4	Sulphate – IR Combustion after ignition	0.05 %	100 %	\$32.95
TC008-S-	Sulphide – Calculation requiring TC000-S and TC008-SO4	0.05 %	100 %	\$34.60
TC508	Sulphate – gravimetric	0.05 %	100 %	\$39.50
TC901	Elemental S	0.01 %	14 %	\$43.45

Requires at least 5 g per sample.

XRF

X-ray fluorescence analysis on fused discs is an excellent method for the determination of whole rock major elements, as well as some minor elements. It is the preferred method for iron ore, bauxite, Ni-laterites, and phosphate ores. Bureau Veritas also offers a specific XRF method for the determination of major elements, plus sub-percent to high-grade Cu, Pb, and Zn ore concentrations.

WHOLE ROCK MAJOR OXIDES

	DETECTION LIMIT	UPPER LIMIT	USD
Stan	dard Package, 15 ele	ments	\$43.30
SiO ₂	0.01 %	100 %	
Al ₂ O ₃	0.01 %	100 %	
Fe ₂ O ₃	0.01 %	100 %	
CaO	0.01 %	100 %	
MgO	0.01 %	100 %	
Na ₂ O	0.01 %	15 %	
K₂O	0.01 %	15 %	
MnO	0.01 %	50 %	
TiO ₂	0.01 %	20 %	
P ₂ O ₅	0.01 %	40 %	
Cr ₂ O ₃	0.01 %	10 %	
Ва	0.01 %	58.8 %	
LOI	0.1 %	100 %	
SO ₃	0.002 %	10 %	
Sr	0.002 %	1.5 %	
	Al ₂ O ₃ Fe ₂ O ₃ CaO MgO Na ₂ O K ₂ O MnO TiO ₂ P ₂ O ₅ Cr ₂ O ₃ Ba LOI SO ₃ Sr	Al ₂ O ₃ 0.01 % Fe ₂ O ₃ 0.01 % CaO 0.01 % MgO 0.01 % Na ₂ O 0.01 % K ₂ O 0.01 % MnO 0.01 % TiO ₂ 0.01 % P ₂ O ₅ 0.01 % Cr ₂ O ₃ 0.01 % Ba 0.01 % LOI 0.1 % SO ₃ 0.002 % Sr 0.002 %	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Requires at least 12 g per sample.

BAUXITE

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
XF701	Bau	xite Package, 17 elem	nents	\$54.65
	SiO ₂	0.01 %	100 %	
	Al ₂ O ₃	0.01 %	100 %	
	Fe ₂ O ₃	0.01 %	100 %	
	CaO	0.01 %	50 %	
	MgO	0.01 %	40 %	
	Na ₂ O	0.01 %	8.5 %	
	K ₂ O	0.01 %	15 %	
	MnO	0.01 %	50 %	
	TiO ₂	0.01 %	10 %	
	P ₂ O ₅	0.001 %	40 %	
	Cr ₂ O ₃	0.004 %	10 %	
	ВаО	0.01 %	10 %	
	ZnO	0.002 %	1 %	
	ZrO ₂	0.01 %	1.5 %	
	V ₂ O ₅	0.002 %	10 %	
	SO ₃	0.01 %	3.5 %	
	LOI	0.1 %	100 %	

IRON ORE ANALYSIS

Fused discs for XRF analysis provide robust and precise data for all iron ore matrices. Loss On Ignition (LOI) is determined separately at 1000°C. Sample is mixed with lithium tetraborate/ metaborate flux followed by fusion and casting into glass discs. Fused discs are entirely homogeneous and eliminate matrix and grain size variability thus presenting an ideal sample to an extremely stable analytical platform. The data produced is of the highest assay quality and is verified with a full spectrum of iron ore specific certified reference materials.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
XF732	Stan	dard suite of major o	xides	\$48.40
	SiO ₂	0.01 %	100 %	
	Al ₂ O ₃	0.01 %	100 %	
	Fe	0.01 %	75 %	
	CaO	0.01 %	50 %	
	MgO	0.01 %	50 %	
	K ₂ O	0.01 %	15 %	
	MnO	0.01 %	50 %	
	TiO ₂	0.01 %	20 %	
	P	0.001 %	10 %	
	Cr	0.001 %	10 %	
	LOI	0.1 %	100 %	
XF732-E		e Extended suite, 23	elements	\$53.15
XF732-E		e Extended suite, 23	elements 5 %	\$53.15
XF732-E	XT Iron Or			\$53.15
XF732-E	XT Iron Or	0.002 %	5 %	\$53.15
XF732-E	V Ba	0.002 % 0.005 %	5 % 10 %	\$53.15
XF732-E	V Ba Ni	0.002 % 0.005 % 0.001 %	5 % 10 % 8 %	\$53.15
XF732-E	V Ba Ni Co	0.002 % 0.005 % 0.001 % 0.001 %	5 % 10 % 8 % 5 %	\$53.15
XF732-E	V Ba Ni Co	0.002 % 0.005 % 0.001 % 0.001 % 0.002 %	5 % 10 % 8 % 5 % 5 %	\$53.15
XF732-E	V Ba Ni Co Cu Pb	0.002 % 0.005 % 0.001 % 0.001 % 0.002 % 0.005 %	5 % 10 % 8 % 5 % 5 % 8 %	\$53.15
XF732-E	V Ba Ni Co Cu Pb Zn	0.002 % 0.005 % 0.001 % 0.001 % 0.002 % 0.005 % 0.001 %	5 % 10 % 8 % 5 % 5 % 8 % 1.5 %	\$53.15
XF732-E	V Ba Ni Co Cu Pb Zn As	0.002 % 0.005 % 0.001 % 0.001 % 0.002 % 0.005 % 0.001 % 0.002 %	5 % 10 % 8 % 5 % 5 % 8 % 1.5 %	\$53.15
XF732-E	V Ba Ni Co Cu Pb Zn As Sr	0.002 % 0.005 % 0.001 % 0.002 % 0.005 % 0.001 % 0.002 % 0.002 % 0.002 %	5 % 10 % 8 % 5 % 5 % 8 % 1.5 % 1.5 % 3 %	\$53.15

^{*}Requires at least 12 g per sample.

PHOSPHATE ROCK

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
XF740	Phospha (include:	\$54.65		
	SiO ₂	0.01 %	100 %	
	Al ₂ O ₃	0.01 %	100 %	
	Fe ₂ O ₃	0.01%	100 %	
	CaO	0.01%	80 %	
	MgO	0.01%	80 %	
	Na₂O	0.01%	15 %	
	K ₂ O	0.01%	15 %	
	MnO	0.01%	50 %	
	TiO ₂	0.01%	40 %	
	P ₂ O ₅	0.01%	40 %	
	LOI	0.1%	100 %	

XRF FOR BASE METAL BEARING SAMPLES

In addition to commonly reported major elements such as oxides, this XRF method also reports Cu, Pb, and Zn concentrations. The benefit of base metal determination by Li-borate fusion/XRF are the dynamic concentration ranges achievable, plus the absence of potential recovery issues that may exist with acid digestions where sulphur contents are high.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
LF725	Base 15 e	\$50.45		
	SiO ₂	0.02 %	100 %	
	Al ₂ O ₃	0.02 %	100 %	
	Fe ₂ O ₃	0.02 %	100 %	
	CaO	0.02 %	100 %	
	MgO	0.02 %	100 %	
	K ₂ O	0.01 %	15 %	
	MnO	0.01 %	50 %	
	TiO ₂	0.01 %	50 %	
	P_2O_5	0.01 %	40 %	
	Cr ₂ O ₃	0.01 %	10 %	
	Ва	0.01 %	58.8 %	
	Cu*	0.01 %	8 %	
	Pb*	0.01 %	25 %	
	Zn*	0.01 %	40 %	
	LOI	0.1 %	100 %	

^{*}Over limit analysis up to 30% Cu; 75% Pb; 60% Zn.

NICKEL LATERITE ANALYSIS

Exploration and evaluation of nickel laterite requires total determination and mass balance accounting of the major rock-forming elements and the commodity elements Ni, Cu and Co. BVM delivers these requirements by XRF or laser ablation.

LATERITE STANDARD SUITE BY XRF

This package uses a predetermined amount of sample dried at 105°C to remove moisture to ensure that the hygroscopic nature of the material does not add error to the analysis. A test portion of that dried material is then fused in a platinum gold crucible with a lithium tetraborate flux and cast into a disc. Fused discs are analyzed by XRF. Another test portion of dried sample is roasted at 1000°C to determine the loss on ignition. Another test portion of dried sample is roasted at 1000°C to determine the loss on ignition.

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
XF720	Laterite St	andard suite by XRF,	, 15 elements	\$54.65
	SiO ₂	0.01 %	100 %	
	Al ₂ O ₃	0.01 %	100 %	
	Fe ₂ O ₃	0.01 %	100 %	
	CaO	0.01 %	50 %	
	MgO	0.01 %	50 %	
	K ₂ O	0.005 %	15 %	
	MnO	0.002 %	50 %	
	TiO ₂	0.01 %	10 %	
	P ₂ O ₅	0.001 %	15 %	
	Cr ₂ O ₃	0.005 %	6.8 %	
	Ni	0.002 %	7.5 %	
	Со	0.001 %	3.5 %	
	Cu	0.002 %	8 %	
	Zn	0.001 %	1.5 %	
	LOI	0.1 %	100 %	
XF722	Laterite Pa	ckage including TC0	00 (C & S)	\$65.20

Laterite analytical methods incorporate special handling procedures to minimize moisture accumulation due to the hygroscopic nature of the material. Please contact us if you are interested in using other analytical methods not listed here for laterites.

XRF SPECIFIC ELEMENTS BY FUSION

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
XF750-X	High Grade	Tin and Tungsten	Fir	\$26.30 st element
	SnO ₂	0.01%	35 %	
	WO ₃	0.01%	50 %	
	Second elen	nent		\$5.25

CODE	ELEMENT	DETECTION LIMIT	UPPER LIMIT	USD
LF700-X	High Grad	e Cesium		\$24.95
	Cs	0.01%	30 %	
Additional element			By quote	

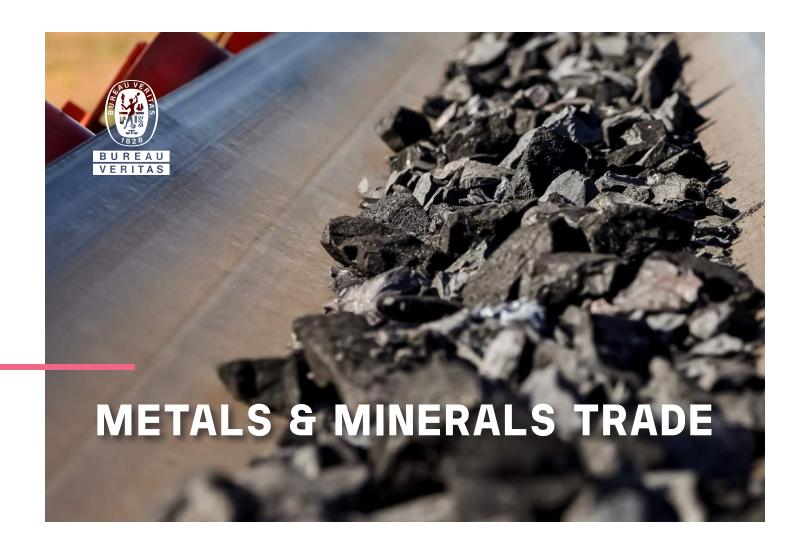
LASER ABLATION PACKAGES

This package utilizes state-of-the-art laser ablation and ICP-MS instrumentation to analyze the fused glass disk from a Li-borate fusion digestion. It can be coupled with wavelength dispersive XRF to provide a complete total whole rock analysis.

FUSED BEAD LASER ABLATION ICP-MS

CODE	ELEMENT	DETECTION LIMIT	USD
LA001	Basic packag	e, 36 elements	By quote
	Ag	0.01 ppm	
	As*	0.2 ppm	
	Ва	0.5 ppm	
	Be	0.2 ppm	
	Bi	0.2 ppm	
	Cd*	0.1 ppm	
	Ce	0.02 ppm	
	Co	0.1 ppm	
	Cr	1 ppm	
	Cs	0.01 ppm	
	Cu	2 ppm	
	Ga	0.1 ppm	
	Ge	0.05 ppm	
	Hf	0.01 ppm	
	In	0.05 ppm	
	La	0.01 ppm	
	Mn	1 ppm	
	Мо	0.2 ppm	
	Nb	0.01 ppm	
	Ni	2 ppm	
	Pb	1 ppm	
	Sb	0.1 ppm	
	Sc	0.1 ppm	
	Sn	0.2 ppm	
	Sr	0.1 ppm	
	Та	0.01 ppm	
	Tb	0.01 ppm	
	Те	0.2 ppm	
	Th	0.01 ppm	
	Ti	1 ppm	
	U	0.01 ppm	
	V	0.1 ppm	
	W	0.5 ppm	
	Υ	0.02 ppm	
	Zn	5 ppm	
	Zr	0.5 ppm	

Method is performed at BVM's Perth, Australia facility. Shipping and Australian Customs charges may apply. Ask us about documentation and costs. \$300 minimum charge for service. *Partially volatilized.


- + Lower detection limits are comparable to traditional acid digestion methods.
- + XRF and LA-ICP-MS capabilities can be combined to extend the dynamic range, which removes the need for overlimit analyses (i.e., Sn from 0.2 ppm to percent level).
- + Simplification of the analytical process (only 1 digestion needed for major and trace whole rock characterization).
- + Safety and environmental advantages there are no acids used in digestion.

CODE	ELEMENT	DETECTION LIMIT	USD
LA001-EXT	Extended package including LA001, 49 elements		By quote
	Rb	0.05 ppm	
	Re	0.01 ppm	
	Se*	5 ppm	
	TI	0.2 ppm	
	Dy	0.01 ppm	
	Er	0.01 ppm	
	Eu	0.01 ppm	
	Gd	0.01 ppm	
	Но	0.01 ppm	
	Lu	0.01 ppm	
	Nd	0.01 ppm	
	Pr	0.01 ppm	
	Sm	0.01 ppm	
	Tm	0.01 ppm	
	Yb	0.01 ppm	

^{*}Partially volatilized.

CODE	ELEMENT	DETECTION LIMIT	USD
+ XRF	Major Oxides F	Major Oxides Package, Add-on	
	Al2O3	100 ppm	
	CaO	100 ppm	
	CI	10 ppm	
	Fe2O3	100 ppm	
	K2O	100 ppm	
	MgO	100 ppm	
	MnO	10 ppm	
	Na2O**	100 ppm	
	P2O5	10 ppm	
	SO3	10 ppm	
	SiO2	100 ppm	
	TiO2	10 ppm	
	LOI	0.01 %	
	Sum	0.01 %	

^{**}May not be available for some sample types.

BY PROVIDING OUR BROAD RANGE OF INDEPENDENT INSPECTION AND TESTING SERVICES THROUGHOUT THE ENTIRE SUPPLY CHAIN, WE AIM TO MINIMIZE COMMERCIAL RISK BY QUICKLY DETERMINING THE PHYSICAL PROPERTIES OF YOUR SHIPMENTS.

For over 150 years Bureau Veritas has been one of the leading global providers of independent Inspection & Testing services to the metals trade sector.

Metal & Minerals supply chains are global and highly dynamic – the industry requires service partners able to operate through a consistent global platform. Bureau Veritas' minerals trade team provides timely and accurate estimates of Quantity and Quality which allow our clients to manage their risks and agree the financial value of their transactions. Third parties, such as trade finance partners, also rely on our work - so Integrity and our Brand Reputation is fundamental to our long-term success in this sector.

METALS & MINERALS TRADE

PRODUCTS SERVED

KEY PRODUCTS

- Non-Ferrous Metals: Copper, Zinc, Lead, Nickel concentrate & intermediates
- Precious Metals: Gold, Silver & Platinum Group Metals (PGM)
- Recycled Materials: Catalysts, Electronic Scrap, Battery metals
- Steel Raw Material: Iron Ores & Iron ore pellets, HBI,
- Ferroalloys
- Steel Scrap
- Chrome Ores, Manganese Ores, Bauxite
- Industrial Minerals

Accurate commercial settlement relies on Representative Sampling – working throughout the world's main logistic hubs, mining and refining locations, Bureau Veritas' expertise is on hand to help our client reduce risk and facilitate the smooth flow of physical commodities through the provision of independent and accurate weight and quality data.

KEY CAPABILITIES

- Load and Discharge Supervision and Inspection
- Weight Determination
- Warehouse, Vault & Storage Facility Auditing Services
- Sampling & Assaying Consultancy Services

LABORATORY SERVICES

Bureau Veritas' network of dedicated Trade Laboratories covers the main trading regions and time zones. Our clients rely on our experience and expertise across a wide range of traded metal products to deliver accurate and precise measurement of economic and penalty elements.

KEY CAPABILITIES

- High Precision Assaying
- Arbitration "Umpire" Testing
- Transportable Moisture Limit (TML) & UN Tests
- Coke Reactivity
- Laboratory Auditing and Training Services

LABORATORY ACID ROCK DRAINAGE (ARD) PREDICTION TESTS ARE USED TO DETERMINE THE MOST APPROPRIATE DISPOSAL OPTIONS FOR WASTE ROCK AND TAILINGS IN ORDER TO MINIMIZE ENVIRONMENTAL IMPACT.

Bureau Veritas offers the full range of ARD testing services for prediction studies and routinely conducts geochemical analysis, static testing and kinetic test programs. To better approximate site conditions, larger scale tests under specific environmental conditions can be conducted. To simulate underwater disposal of water materials, custom subaqueous disposal (SAD) tests can be conducted to predict pore water quality, seepage quality to groundwater, and surface water quality.

ACID ROCK DRAINAGE

Bureau Veritas has participated in the development of acid generation potential testing as well as sulphur speciation to support ARD prediction testing for many years. This testing is used to determine appropriate disposal options and storage for waste rock and tailings to minimize environmental impact.

Bureau Veritas offers the full range of ARD testing services for prediction studies and routinely conducts geochemical analysis, static testing and kinetic test programs. All test methods are offered including MEND, EPA, ASTM, and NAG methods. Custom tests include a variety of sequential leach tests. Our extensive laboratory facilities enable customized experimental design and testing over a wide range of simulated environmental conditions.

ACID ROCK DRAINAGE

SAMPLE PREPARATION

Bureau Veritas has a well-equipped sample preparation lab to provide sample drying, crushing, splitting and pulverizing when needed. Customized sample preparation is also offered.

GEOCHEMICAL CHARACTERIZATION

Bureau Veritas offers a complete suite of geochemical analyses for characterization of overburden, waste rock and tailing materials by a variety of techniques.

STATIC TESTING

ACID BASE ACCOUNTING (ABA)

Bureau Veritas offers all acid base accounting (ABA) procedures including standard Sobek, modified Sobek, Net Acid Generation (NAG), and siderite corrected NP. Analyses commonly include paste pH, fizz rating, total sulfur, sulfate sulfur, sulfide sulfur and neutralization potential (NP). We also calculate and provide maximum potential acidity (MPA), carbonate NP (NNP), net NP and NP ratio (NPR).

STATIC WATER LEACHING PROCEDURES

Short-term water extraction (18 to 24h) procedures are routinely conducted to determine the presence of readily leachable contaminants. Methods we offer include the MEND SFE, SPLP, TCLP and Meteoric Water Mobility Procedure (MWMP). Extract analysis commonly includes pH, EC and dissolved metals by ICP-ES or ICP-MS. Other possible analytes include ORP, alkalinity, acidity, sulfate, TDS, CI, F, Br, nitrate-N, nitrite-N, ammonia-N, TKN, total P, ortho-phosphate, CN species and other anions.

KINETIC TESTING

HUMIDITY CELL TESTS — MEND AND ASTM D5744 METHODS

These tests are used to evaluate the long-term weathering characteristics of mine waste materials disposed under subaerial conditions. Tests are run in strict adherence to standard procedures. Possible analyses of leachates include: pH, EC, ORP, electrical conductivity, TDS, hardness, sulfate, anions (nitrate, nitrite, chloride, fluoride, phosphate, ortho-phosphate, TKN, ammonia), alkalinity, acidity, Hg by CVAF, and dissolved metal scans by ICP-ES or ICP-MS.

LEACH COLUMNS (LYSIMETERS)

While similar to humidity cell testing in some ways, these tests simulate site waste disposal conditions (such as

saturated, non-saturated or partially saturated) more closely. Water is typically added in a trickle leach fashion, but periodic flushings are possible to better simulate field conditions. Analyses that can be conducted on leachate water are the same as those for humidity cell tests.

SUBAQUEOUS DISPOSAL COLUMNS

These tests simulate underwater disposal of tails or wasterock and the impacts of such disposal on the water system. Clear cast acrylic type column material is used. These tests often incorporate a series of ports, which enable sampling of surface water and pore water within the waste material. These tests can be operated under anoxic conditions using nitrogen or argon to displace oxygen. A custom in-line sampling port can be installed for in-situ analysis of selected parameters such as pH, Eh, ORP and dissolved oxygen. Analyses conducted on the water samples are the same as those for leach column tests, with the addition of dissolved oxygen analysis.

OTHER NON-STANDARD TESTS

Bureau Veritas has the ability to construct and operate customized test systems for the purpose of ARD and/or metal leaching prediction. This allows for investigation of scaled-up tests or custom environmental conditions to simulate field conditions. Larger scale versions of the humidity cell and static water leach tests, as well as barrel tests, are offered. These provide a larger volume of leach water, which may be required for atypical water analyses such as radionuclides investigation, confirmation of novel controls, or prevention measures. Also, customized sequential leach tests are offered.

MINING EQUIPMENT OPERATES IN DEMANDING ENVIRONMENTAL CONDITIONS AND IS CONTINUALLY EXPOSED TO THE CONTAMINATION OF SITE DUST AND DIRT, EXTENSIVE HOURS OF OPERATION, AND EXTREME RANGES IN TEMPERATURE.

Bureau Veritas offers an effective oil analysis program that will help to identify component failures before they occur. Our testing packages help to safeguard your critical assets, such as engines, geared systems, hydraulic systems, and cooling systems. Left undetected, wear and contamination issues can result in catastrophic failure. Monitoring machine fluids with oil analysis, coolant analysis, and fuel analysis will ensure peak performance and extend equipment life and reliability.

OIL CONDITION MONITORING

ENGINES

The biggest concerns in maintaining engine health are wear and contamination. An engine oil's four worst enemies are dirt, soot, fuel dilution and glycol, or engine coolant. Bureau Veritas' testing for engines includes spectrochemical analysis (21-elements), viscosity at 100°C, fuel soot, and water (%).

GEARED SYSTEMS

Implementing a routine oil analysis program to monitor transmission wear and contamination can prove to be an extremely viable means for preventing gearbox failure, reducing downtime and controlling maintenance costs. We offer application testing for transmissions, differentials, final drive, and gearboxes, that include spectrochemical analysis (21-elements), viscosity at 40°C, water (%), and particle quantifier (PQ Index).

HYDRAULIC SYSTEMS

Hydraulic fluid cleanliness is critical to optimal hydraulic system performance and should be monitored regularly with oil analysis to maintain system health and reliability at a minimal cost. Our hydraulic systems testing includes, spectrochemical analysis (21-elements), viscosity at 40°C, water (%), and ISO particle count.

COOLING SYSTEMS

Coolant testing and analysis monitors changes in coolant properties due to chemical reactions occurring within the cooling system before they escalate to engine or coolant system failure. Bureau Veritas offers cooling systems testing that includes, corrosion metals & inhibitor (14-element ICP profile), appearance, color, foam, oil, fuel, magnetic precipitate, non-magnetic precipitate, odor, pH, glycol %, freeze point, nitrites, specific conductance, total harness, and carboxylic acid.

QUALITY ASSURANCE QUALITY CONTROL

At Bureau Veritas Minerals (BVM) our core product is analytical data. Over many years, we have invested heavily in proprietary software and staff development to ensure that you get the highest quality data. BVM has implemented a comprehensive quality management system meeting the requirements of ISO/IEC 17025 to ensure the necessary processes and oversight are in place to achieve this goal.

QUALITY ASSURANCE

Through the process of external auditing by recognized organizations, our facilities maintain ISO 17025 accreditation. This accreditation provides independent verification that the management system has been implemented and meets the requirements of the standard. All analytical hubs have received ISO/IEC 17025 accreditation for specific laboratory procedures and sample preparation facilities are monitored to ensure compliance with quality control and quality assurance requirements for off site preparation.

AUDIT PROGRAM

All BVM facilities are also internally audited against the above ISO standard by knowledgeable and trained personnel on a scheduled basis.

PROFICIENCY TESTING PROGRAMS

BVM laboratories routinely participate in national and international interlaboratory comparison studies in order to independently assess individual laboratory performance for the test method(s) analyzed.

QUALITY CONTROL

Through comprehensive training, BVM ensures that laboratory staff are competent to perform the analysis requested. All labs use validated methods to achieve accurate reproducible results with equipment that is maintained and calibrated to achieve the highest levels of performance. At all steps of sample handling, the laboratory maintains traceability of samples through the use of barcode tracking and maintains detailed audit trails of the people and equipment used to perform analysis.

In Sample Preparation

As one of the most critical steps in the sample analysis process, BVM continually monitors the efficiency of crushing and pulverizing to ensure that a representative portion of each sample submitted is prepared. Sample duplicates are created and analyzed for all rock and drill core samples submitted.

In Analysis

In addition to routine calibration solutions the laboratory inserts reference materials, replicates and blanks into randomly assigned positions within each analytical rack generated by our proprietary LIMS. These QC materials provide a final verification of the entire analytical process.

In Data Review and Evaluation

This is the final layer that is made up of sophisticated proprietary software and professional personnel reviewing the data.

ARGENTINA

MAIPU, MENDOZA
 Tel: +54 261 524 0456/7

• PERITO MORENO Tel: +54 11 663 26402

AUSTRALIA

● **ADELAIDE**Tel: +61 8 8416 5200

• CARDIFF Tel: +61 2 4902 4858

• KALGOORLIE

Tel: +61 8 9021 7155

Tel: +61 8 6218 5700

WHYALLA
 Tel: +61 8 8647 6500

CANADA

■ **BEDFORD, NS**Tel: +1 902 832 4852
Toll free: +1 800 565 7227

BURNABY, BC

Tel: +1 604 734 7276 Toll free: +1 800 665 8566

CALGARY, AB

Tel: +1 403 291 3077 Toll free: +1 800 386 7247

COURTENAY, BC

Tel: +1 250 338 7786 Toll free: +1 877 533 3313

EDMONTON. AB

Tel: +1 780 577 7100 Toll free: +1 800 386 7247

■ **GRANDE PRAIRIE, AB** Tel: +1 780 532 0227

LONDON, ON

Tel: +1 519 652 9444 Toll free: +1 800 268 7396

■ MISSISSAUGA, ON

Environmental Services, Main Office Tel: +1 905 817 5700 Toll free: +1 800 563 6266 mining@bvlabs.com MONTREAL, QC Tel: +1 514 448 9001

OTTAWA, ON

Tel: +1 613 274 0573 Toll free: +1 877 480 7272

■ PORT HOPE, ON

Tel: +1 905 885 8080

QUEBEC CITY, QCTel: +1 418 658 5784

REGINA, SK

Tel: +1 306 565 1008 Toll free: +1 800 386 7247

SAGUENAY, QC
Tel: +1 418 543 3788

■ SASKATOON, SK
Tel: +1 306 249 1014
Toll free: +1 800 386 7247

ST. JOHN'S, NL

Tel: +1 709 754 0203 Toll free: +1 888 492 7227

SUDBURY, ON

Tel: +1 705 674 5700

SYDNEY, NS
Tel: +1 902 567 1255

• TIMMINS, ON Tel: +1 705 360 5232

Tel: +1 705 221 4987

THUNDER BAY, ON

Tel: +1 807 356 5148

VANCOUVER. BC

Geoanalytical Services, Main Office Tel: +1 604 253 3158 Toll free: +1 800 990 2263 bvmininfo@bureauveritas.com

VICTORIA, BC
Tel: +1 250 385 6112
Toll free: +1 866 385 6112

■ WINNIPEG, MB

Tel: +1 204 772 7276 Toll free: +1 866 800 6208

WHITEHORSE, YK

Tel: +1 867 393 4725Tel: +1 867 393 2466

YELLOWKNIFE, NWT Tel: +1 867 445 2448

CHILE

• SANTIAGO Tel: +56 2 3502100

• COQUIMBO Tel: +52 2 23502100

COLOMBIA

MEDELLIN
 Tel: +57 4 354 0454

DOMINICAN REPUBLIC

MAIMON

Tel: +809 551 2011

ECUADOR

QUITO

Tel: +593 2 282 9407

IVORY COAST

ABIDJAN

Tel: +22 52 35 35 323

MALI

BAMAKO

Tel: +22 37 64 29 914

MEXICO

• CABORCA Tel: +52 637 372 6521

DURANGO

Tel: +52 618 810 3974

HERMOSILLO

Tel: +52 662 260 3057

NICARAGUA

MANAGUA CITY
 Tel: +505 22522 135

PERU

LIMA & AREQUIPA

Tel: +51 944 005 968 Tel: +51 924 072 318

POLAND

KRAKOW

Tel: +48 601 306 201

SAUDI ARABIA

Jeddah

Tel: +966 800 111 1122

SOUTH AFRICA

PRETORIA

Tel: +27 12 94 00 911

TURKEY

ANKARA

Tel: +90 312 866 3466/3539

USA

CHICAGO

+1 847 726-3320 Toll free: +1 888 576 7522

DETROIT

+1 248 344-2652 Toll free: +1 800 806 5887

ELKO

Tel: +1 775 777 1438

FAIRBANKS

Tel: +1 775 303 8896

JUNEAU

Tel: +1 907 750 1734

RENO (Sparks)
 Tel: +1 775 359 6311

KENNESAW

+1 770 499 7701

Toll free: +1 800 252 9919

51

Bureau Veritas | Schedule of Services & Fees 2023

CONVERSION CHARTS & VALUATIONS

OXIDES CONVERSION FACTORS

ELEMENT	CONVERSION FACTOR	OXIDE
Al	1.889	Al_2O_3
Ва	1.669 1.116	BaSO ₄ BaO
Ве	2.775	BeO
С	3.666	CO ₂
Са	1.399 2.497	CaO CaCO ₃
Cr	1.461	Cr ₂ O ₃
F	2.055	CaF ₂
Fe	1.286 1.430	FeO Fe ₂ O ₃
К	1.205	K ₂ O
Mg	1.658 3.468	MgO MgCO ₃
Mn	1.291	MnO ₂
Na	1.348	Na ₂ O
Nb	1.431	Nb_2O_5
Ni	1.273	NiO
Р	2.291	P_2O_5
Pb	1.077	PbO
Rb	1.094	Rb ₂ O
S	2.497 2.996	SO ₃ SO ₄
Si	2.139	SiO2
Sn	1.270	SnO ₂
Sr	1.185	SrO
Та	1.221	Ta ₂ O ₅
Th	1.138	ThO ₂
Ti	1.668	TiO ₂
U	1.179	U ₃ O ₈
V	1.785	V_2O_5
W	1.261	WO ₃
Υ	1.270	Y_2O_3
Zn	1.244	ZnO
Zr	1.351	ZrO ₂

MESH TO MICRON CONVERSION CHART

OPENING	US STANDARD	TYLER
2.00 mm	10	9
1.70 mm	12	10
1.40 mm	14	12
1.18 mm	16	14
1.00 mm	18	16
850 µm	20	20
710 µm	25	24
600 µm	30	28
500 μm	35	32
425 µm	40	35
355 µm	45	42
300 µm	50	48
250 μm	60	60
212 µm	70	65
180 µm	80	80
150 µm	100	100
125 µm	120	115
106 µm	140	150
90 µm	170	170
75 μm	200	200
63 µm	230	250
53 μm	270	270
45 μm	325	325
38 µm	400	400

ASSAY VALUATIONS

VALUE	PARTS PER MILLION (ppm)	METRIC TONNE	SHORT TON	LONG TON
1 Gram / MT	1	0.03215	0.02917	0.03266
1 Troy oz / MT	31.104	1	0.9072	1.106
1 Troy oz / ST	34.286	1.1023	1	1.120
1 Troy oz / LT	30.612	0.9842	0.8929	1

CONVERSION FOR WEIGHTS	TROY OZ.	AVOIRDUPOIS OZ.	GRAMS
1 Troy oz.	1	1.0971	31.104
1 Avoirdupois oz.	0.91146	1	28.35
1 Gram	0.03215	0.03527	1

¹ Metric Tonne (MT) = 1000 kilograms = 2204.6 pounds 1 Short Ton (ST) = 907.2 kilograms = 2000 pounds 1 Long Ton (LT) = 1016 kilograms = 2240 pounds

Shaping a World of Trust

© COPYRIGHT BUREAU VERITAS — VERSION 3 | 01/2024

